题目内容

如图,直线l:y=x+1与x轴、y轴分别交于A、B两点,点C与原点O关于直线l对称.反比例函数y=的图象经过点C,点P在反比例函数图象上且位于C点左侧,过点P作x轴、y轴的垂线分别交直线l于M、N两点.

(1)求反比例函数的解析式;

(2)求AN•BM的值.

考点:

反比例函数与一次函数的交点问题.

专题:

计算题.

分析:

(1)连接AC,BC,由题意得:四边形AOBC为正方形,对于一次函数解析式,分别令x与y为0求出对于y与x的值,确定出OA与OB的值,进而C的坐标,代入反比例解析式求出k的值,即可确定出反比例解析式;

(2)过M作ME⊥y轴,作ND⊥x轴,根据P在反比例解析式上,设出P坐标得出ND的长,根据三角形AND为等腰直角三角形表示出AN与BM的长,即可求出所求式子的值.

解答:

解:(1)连接AC,BC,由题意得:四边形AOBC为正方形,

对于一次函数y=x+1,令x=0,求得:y=1;令y=0,求得:x=﹣1,

∴OA=OB=1,

∴C(﹣1,1),

将C(﹣1,1)代入y=得:1=,即k=﹣1,

则反比例函数解析式为y=﹣

(2)过M作ME⊥y轴,作ND⊥x轴,

设P(a,﹣),可得ND=﹣,ME=|a|=﹣a,

∵△AND和△BME为等腰直角三角形,

∴AN=×(﹣)=﹣,BM=﹣a,

则AN•BM=﹣•(﹣a)=2.

点评:

此题考查了一次函数与反比例函数的交点问题,涉及的知识有:一次函数与坐标轴的交点,坐标与图形性质,以及等腰直角三角形的性质,熟练掌握待定系数法是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网