题目内容

在矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,如果设折痕为EF,那么重叠部分△AEF的面积等于


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
D
分析:要求重叠部分△AEF的面积,选择AF作为底,高就等于AB的长;而由折叠可知∠AEF=∠CEF,由平行得∠CEF=∠AFE,代换后,可知AE=AF,问题转化为在Rt△ABE中求AE.
解答:设AE=x,由折叠可知,EC=x,BE=4-x,
在Rt△ABE中,AB2+BE2=AE2,即32+(4-x)2=x2
解得:x=
由折叠可知∠AEF=∠CEF,由AD∥BC得∠CEF=∠AFE,
∴∠AEF=∠AFE,即AE=AF=
∴S△AEF=×AF×AB=××3=.故选D.
点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网