题目内容
【答案】分析:根据零指数幂和负整数指数幂得到原式=3
+1-2,然后合并即可.
解答:解:原式=3
+1-2
=3
-1.
点评:本题考查了实数的运算:先进行乘方或开方运算,再进行乘除运算,然后进行实数的加减运算.也考查了零指数幂和负整数指数幂.
解答:解:原式=3
=3
点评:本题考查了实数的运算:先进行乘方或开方运算,再进行乘除运算,然后进行实数的加减运算.也考查了零指数幂和负整数指数幂.
练习册系列答案
相关题目
【问题情境】
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+
)(x>0).
【探索研究】
(1)我们可以借鉴以前研究函数的经验,先探索函数y=x+
(x>0)的图象和性质.
①填写下表,画出函数的图象;
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+
(x>0)的最小值.
【解决问题】
(2)用上述方法解决“问题情境”中的问题,直接写出答案.
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+
【探索研究】
(1)我们可以借鉴以前研究函数的经验,先探索函数y=x+
①填写下表,画出函数的图象;
| x | … | 1 | 2 | 3 | 4 | … | |||
| y | … | … |
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+
【解决问题】
(2)用上述方法解决“问题情境”中的问题,直接写出答案.