题目内容

某农庄计划在30亩空地上全部种植蔬菜和水果,菜农小张和果农小李分别承包了种植蔬菜和水果的任务.小张种植每亩蔬菜的工资y(元)与种植面积m(亩)之间的函数如图①所示,小李种植水果所得报酬z(元)与种植面积n(亩)之间函数关系如图②所示.

(1)如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是 140 元,小张应得的工资总额是 2800 元,此时,小李种植水果 10 亩,小李应得的报酬是 1500 元;

(2)当10<n≤30时,求z与n之间的函数关系式;

(3)设农庄支付给小张和小李的总费用为w(元),当10<m≤30时,求w与m之间的函数关系式.

考点:

一次函数的应用.

分析:

(1)根据图象数据解答即可;

(2)设z=kn+b(k≠0),然后利用待定系数法求一次函数解析式即可;

(3)先求出20<m≤30时y与m的函数关系式,再分①10<m≤20时,10<m≤20;②20<m≤30时,0<n≤10两种情况,根据总费用等于两人的费用之和列式整理即可得解.

解答:

解:(1)由图可知,如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是(160+120)=140元,

小张应得的工资总额是:140×20=2800元,

此时,小李种植水果:30﹣20=10亩,

小李应得的报酬是1500元;

故答案为:140;2800;10;1500;

(2)当10<n≤30时,设z=kn+b(k≠0),

∵函数图象经过点(10,1500),(30,3900),

解得

所以,z=120n+300(10<n≤30);

(3)当10<m≤30时,设y=km+b,

∵函数图象经过点(10,160),(30,120),

解得

∴y=﹣2m+180,

∵m+n=30,

∴n=30﹣m,

∴①当10<m≤20时,10<m≤20,

w=m(﹣2m+180)+120n+300,

=m(﹣2m+180)+120(30﹣m)+300,

=﹣2m2+60m+3900,

②当20<m≤30时,0<n≤10,

w=m(﹣2m+180)+150n,

=m(﹣2m+180)+150(30﹣m),

=﹣2m2+30m+4500,

所以,w与m之间的函数关系式为w=

点评:

本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,(3)难点在于要分情况讨论并注意m、n的取值范围的对应关系,这也是本题最容易出错的地方.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网