题目内容
2010年4月8日上海世博筹备委员会聘请了一批专家对中国馆、瑞士馆、沙特馆和日本馆进行试运行参观,以便及时发现问题改进服务.每位专家发放一张世博临时卡,每张卡上印有编号,编号从20001开始、按由小到大顺序排列的连续整数.小明随机调查了40名专家的编号及他们最满意的场馆(每人只能选择一个最满意的场馆),结果整理如下:| 编号 | 20003 | 20008 | 20012 | 20016 | 20024 | 20028 | 20042 | 20048 | 20068 | 20075 |
| 馆别 | A | D | A | B | C | A | A | B | A | B |
| 编号 | 20079 | 20088 | 20091 | 20104 | 20116 | 20118 | 20122 | 20136 | 20144 | 20154 |
| 馆别 | A | B | C | A | A | B | A | D | A | B |
| 编号 | 20155 | 20163 | 20172 | 20188 | 20193 | 20199 | 20201 | 20208 | 20210 | 20229 |
| 馆别 | C | B | A | B | A | D | A | B | A | A |
| 编号 | 20235 | 20242 | 20253 | 20260 | 20264 | 20272 | 20284 | 20288 | 20294 | 20302 |
| 馆别 | A | C | A | D | A | B | A | C | A | D |
(1)在被调查的这40名专家中,对中国馆最满意的频数出现
(2)若用扇形统计图表示上述数据,则对沙特馆最满意的所占的圆心角为
(3)请运用中位数的知识来估计这批专家中对瑞士馆最满意的人数.
分析:(1)本题需先根据对中国馆最满意的次数,再根据频数与频率的计算公式即可求出答案.
(2)本题需先根据对沙特馆最满意的人数,再根据扇形统计图的圆心角度数的计算公式即可得出答案.
(3)本题需先根据中位数以及对瑞士馆最满意的人数分布进行计算,即可求出答案.
(2)本题需先根据对沙特馆最满意的人数,再根据扇形统计图的圆心角度数的计算公式即可得出答案.
(3)本题需先根据中位数以及对瑞士馆最满意的人数分布进行计算,即可求出答案.
解答:解:(1)20;
20÷40=
;
(2)∵对沙特馆最满意的有5次,
∴
×360°=45°;
(3)解:这40位专家的编号的中位数是20154.5,故这批专家的人数是154×2=308人
308×
=77.
∴这批专家中对瑞士馆最满意的人数估计有77人.
故答案为:20,
;77.
20÷40=
| 1 |
| 2 |
(2)∵对沙特馆最满意的有5次,
∴
| 5 |
| 40 |
(3)解:这40位专家的编号的中位数是20154.5,故这批专家的人数是154×2=308人
308×
| 10 |
| 40 |
∴这批专家中对瑞士馆最满意的人数估计有77人.
故答案为:20,
| 1 |
| 2 |
点评:本题主要考查了统计表,在解题时要根据表中的数据以及频数、频率、中位数、扇形统计图等知识点进行计算是本题的关键.
练习册系列答案
相关题目