题目内容
【题目】图①,图②都是4×6的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,且点A,B均在格点上.
![]()
(1)在图①中以AB为对角线画出一个矩形,使矩形的另外两个顶点也在格点上,且所画的矩形不是正方形;
(2)在图②中以AB为对角线画出一个菱形,使菱形的另外两个顶点也在格点上,且所画的菱形不是正方形;
(3)图①中所画的矩形的面积为 ;图②中所画的菱形的周长为 .
【答案】(1)见解析;(2)见解析;(3)8,4
.
【解析】
(1)根据矩形的性质画图即可;
(2)根据菱形的性质画图即可;
(3)根据矩形的面积公式和菱形的周长公式即可得到结论.
解:(1)如图①所示,矩形ACBD即为所求;
![]()
(2)如图②所示,菱形AFBE即为所求;
![]()
(3)矩形ACBD的面积=2×4=8;菱形AFBE的周长=4×
=4
,
故答案为:8,4
.
练习册系列答案
相关题目
【题目】某批乒乓球的质量检验结果如下:
抽取的乒乓球数n | 200 | 500 | 1000 | 1500 | 2000 |
优等品频数m | 188 | 471 | 946 | 1426 | 1898 |
优等品频率 | 0.940 | 0.942 | 0.946 | 0.951 | 0.949 |
(1)画出这批乒乓球“优等品”频率的折线统计图;
(2)这批乒乓球“优等品”的概率的估计值是多少?
(3)从这批乒乓球中选择5个黄球、13个黑球、22个红球,它们除颜色外都相同,将它们放入一个不透明的袋中.
①求从袋中摸出一个球是黄球的概率;
②现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于
, 问至少取出了多少个黑球?