题目内容

如图,AB为⊙O的直径,劣弧数学公式,BD∥CE,连接AE并延长交BD于D.
(1)求证:BD是⊙O的切线;
(2)若⊙O的半径为2cm,AC=3cm,求BD的长.

(1)证明:
∵AB是直径,
∴AB⊥CE
∵BD∥CE,
∴DB⊥AB,
∴BD是⊙O的切线

(2)解:连接BE,∵AB为⊙O的直径,
∴∠AEB=90°
∴在
∴在,∴

∴在Rt△ABD中,由勾股定理得:
分析:(1)根据题意得出AB平分CE,由垂径定理得推论得出AB⊥CE,再由BD∥CE,得出BD是⊙O的切线;
(2)连接BE,则∠AEB=90°,在直角三角形中,利用三角函数的定义求得AD,再在Rt△ABD中,由勾股定理得出BD的长.
点评:本题考查了切线的判定和性质、圆周角定理以及解直角三角形,是基础知识要熟练掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网