题目内容

如图,已知△ABC的角平分线BD与∠ACB的外角平分线交于D点,DE∥BC交于E,交AC于F,求证:EF=BE-CF.
分析:根据角平分线得出∠ABD=∠CBD,根据平行线的性质得出∠EDB=∠CBD,推出∠ABD=∠EDB,推出DE=BE,同理推出DF=CF,即可得出答案.
解答:证明:∵BD平分∠ABC,
∴∠ABD=∠CBD,
∵DE∥BC,
∴∠EDB=∠CBD,
∴∠ABD=∠EDB,
∴DE=BE,
同理DF=CF,
∵EF=DE-DF,
∴EF=BE-CF.
点评:本题考查了平行线的性质,角平分线定义,等腰三角形的判定的应用,关键是推出DE=BE和CF=DF.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网