题目内容

作业宝如图,在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B的直线与CD的延长线交于点F,AC∥BF.
(1)若∠FGB=∠FBG,求证:BF是⊙O的切线;
(2)若tan∠F=数学公式,CD=a,请用a表示⊙O的半径;
(3)求证:GF2-GB2=DF•GF.

(1)证明:∵OA=OB,
∴∠OAB=∠OBA,
∵OA⊥CD,
∴∠OAB+∠AGC=90°,
又∵∠FGB=∠FBG,∠FGB=∠AGC,
∴∠FBG+∠OBA=90°,
即∠OBF=90°,
∴OB⊥FB,
∵AB是⊙O的弦,
∴点B在⊙O上,
∴BF是⊙O的切线;

(2)解:∵AC∥BF,
∴∠ACF=∠F,
∵CD=a,OA⊥CD,
∴CE=CD=a,
∵tan∠F=
∴tan∠ACF==
=
解得AE=a,
连接OC,设圆的半径为r,则OE=r-a,
在Rt△OCE中,CE2+OE2=OC2
即(a)2+(r-a)2=r2
解得r=a;

(3)证明:连接BD,
∵∠DBG=∠ACF,∠ACF=∠F(已证),
∴∠DBG=∠F,
又∵∠FGB=∠BGF,
∴△BDG∽△FBG,
=
即GB2=DG•GF,
∴GF2-GB2=GF2-DG•GF=GF(GF-DG)=GF•DF,
即GF2-GB2=DF•GF.
分析:(1)根据等边对等角可得∠OAB=∠OBA,然后根据OA⊥CD得到∠OAB+∠AGC=90°推出∠FBG+∠OBA=90°,从而得到OB⊥FB,再根据切线的定义证明即可;
(2)根据两直线平行,内错角相等可得∠ACF=∠F,根据垂径定理可得CE=CD=a,连接OC,设圆的半径为r,表示出OE,然后利用勾股定理列式计算即可求出r;
(3)连接BD,根据在同圆或等圆中,同弧所对的圆周角相等可得∠DBG=∠ACF,然后求出∠DBG=∠F,从而求出△BDG和△FBG相似,根据相似三角形对应边成比例列式表示出BG2,然后代入等式左边整理即可得证.
点评:本题是圆的综合题型,主要考查了切线的证明,解直角三角形,勾股定理的应用,相似三角形的判定与性质,作辅助线构造出直角三角形与相似三角形是解题的关键,(3)的证明比较灵活,想到计算整理后得证是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网