题目内容
【题目】已知:如图,AD⊥BC于D,EG⊥BC与G,∠E=∠3,试问:AD是∠BAC的平分线吗?若是,请说明理由.
![]()
解答:是,理由如下:
∵AD⊥BC,EG⊥BC(已知)
∴∠4=∠5=90°(垂直的定义)
∴AD∥EG
∴∠1=∠E
∠2=∠3
∵∠E=∠3(已知)
∴ =
∴AD是∠BAC的平分线(角平分线的定义).
【答案】同位角相等,两直线平行,两直线平行,同位角相等,两直线平行,内错角相等,∠1,∠2
【解析】解:是.
∵AD⊥BC,EG⊥BC(已知)
∴∠4=∠5=90°(垂直的定义)
∴AD∥EG,(同位角相等,两直线平行)
∴∠1=∠E,(两直线平行,同位角相等)
∠2=∠3.(两直线平行,内错角相等)
∵∠E=∠3,(已知)
∴∠1=∠2,
∴AD是∠BAC的平分线(角平分线的定义).
故答案为:同位角相等,两直线平行,两直线平行,同位角相等,两直线平行,内错角相等,∠1,∠2.
练习册系列答案
相关题目