题目内容

【题目】有两个内角分别是它们对角的一半的四边形叫做半对角四边形.
(1)如图1,在半对角四边形ABCD中,∠B= ∠D,∠C= ∠A,求∠B与∠C的度数之和;

(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO.∠OBA的平分线交OA于点E,连结DE并延长交AC于点F,∠AFE=2∠EAF.

求证:四边形DBCF是半对角四边形;
(3)如图3,在(2)的条件下,过点D作DG⊥OB于点H,交BC于点G.当DH=BG时,求△BGH与△ABC的面积之比.

【答案】
(1)

解:在半对角四边形ABCD中,∠B=∠D,∠C=∠A.

∵∠A+∠B+∠C+∠D=360°,

∴3∠B+3∠C=360°.

∴∠B+∠C=120°.

即∠B与∠C的度数之和120°.


(2)

证明:在△BED和△BEO中,

.

∴△BED≌△BEO(SAS).

∴∠BDE=∠BOE.

又∵∠BCF=∠BOE.

∴∠BCF=∠BDE.

如下图,连结OC.

设∠EAF=.则∠AFE=2∠EAF=2.

∴∠EFC=180°-∠AFE=180°-2.

∵OA=OC,

∴∠OAC=∠OCA=.

∴∠AOC=180°-∠OAC-∠OCA=180°-2.

∴∠ABC=∠AOC=∠EFC.

∴四边形DBCF是半对角四边形.


(3)

解:如下图,作过点OM⊥BC于点M.

∵四边形DBCF是半对角四边形,

∴∠ABC+∠ACB=120°.

∴∠BAC=60°.

∴∠BOC=2∠BAC=120°.

∵OB=OC

∴∠OBC=∠OCB=30°.

∴BC=2BM=BO=BD.

∵DG⊥OB,

∴∠HGB=∠BAC=60°.

∵∠DBG=∠CBA,

∴△DBG△CBA.

=2=.

∵DH=BG,BG=2HG.

∴DG=3HG.

=

=.


【解析】(1)在半对角四边形ABCD中,∠B=∠D,∠C=∠A;根据四边形的内角和为360°,得出∠B与∠C的度数之和.
(2)如图连接OC,根据条件先证△BED≌△BEO,再根据全等三角形的性质得出∠BCF=∠BOE=∠BDE;设∠EAF=.则∠AFE=2∠EAF=2得出∠EFC=180°-∠AFE=180°-2;再根据OA=OC得出∠OAC=∠OCA= , 根据三角形内角和得出∠AOC=180°-∠OAC-∠OCA=180°-2;从而得证.
(3)如下图,作过点OM⊥BC于点M,由四边形DBCF是半对角四边形,得出∠ABC+∠ACB=120°,∠BAC=60°.∠BOC=2∠BAC=120°;再由OB=OC,得出∠OBC=∠OCB=30°.BC=2BM=BO=BD;根据△DBG~△CBA得出答案.
【考点精析】掌握三角形的内角和外角和等腰三角形的性质是解答本题的根本,需要知道三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角;等腰三角形的两个底角相等(简称:等边对等角).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网