题目内容

如图,平分于点,点是射线上的一个动点,若,则的最小值为(   )

A.1               B.2               C.3                D. 4

 

【答案】

B

【解析】根据题意点Q是射线OM上的一个动点,要求PQ的最小值,需要找出满足题意的点Q,根据直线外一点与直线上各点连接的所有线段中,垂线段最短,所以我们过点P作PQ垂直OM,此时的PQ最短,然后根据角平分线上的点到角两边的距离相等可得PA=PQ,利用已知的PA的值即可求出PQ的最小值.

解:过点P作PQ⊥OM,垂足为Q,则PQ为最短距离,

∵OP平分∠MON,PA⊥ON,PQ⊥OM,

∴PA=PQ=2,

故选B

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网