题目内容
计算(1);(2)(﹣a2)3+(﹣a3)2﹣a2•a3
“同位角相等”的逆命题是______________________.
在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.
如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( )
A. ∠BCA=∠F B. ∠B=∠E C. BC∥EF D. ∠A=∠EDF
已知(ax)y=a6,(ax)2÷ay=a3
(1)求xy和2x﹣y的值;
(2)求4x2+y2的值.
在下列代数式: ①(x-y)(x+y), ②(3a+bc)(-bc-3a), ③(3-x+y)(3+x+y), ④(100+1)(100-1)中能用平方差公式计算的是________________(填序号)
已知矩形ABCD,一条直线将该矩形ABCD分割成两个多边形,若这两个多边形的内角和分别为M和N,M+N不可能是( )
A.360° B.540° C.720° D.630°
如图,Rt△ABC中,∠B=90°, AB = 6,BC = 8,且,将Rt△ABC绕点C按顺时针方向旋转90°,得到Rt△A’B’C,则边AB扫过的面积(图中阴影部分)是____________.
(12分)如图,矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上.
(1)若DE=BF,求证:四边形AFCE是平行四边形;
(2)若四边形AFCE是菱形,求菱形AFCE的周长.