题目内容
35°
35°
.分析:由三角形外角性质得,∠ACD=∠A+∠ABC=70°+∠ABC;角平分线的定义,求得∠DCP=
∠ACD=
(70°+∠ABC)=35°+
∠ABC,∠CBP=
∠ABC;再由三角形外角性质得,∠DCP=∠CBP+∠P即35°+
∠ABC=
∠ABC+∠P,求得∠P=35°.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
解答:解:∵∠ACD是△ABC的外角
∴∠ACD=∠A+∠ABC=70°+∠ABC
∵CP是∠ACD的平分线
∴∠DCP=
∠ACD=
(70°+∠ABC)=35°+
∠ABC
∵BP是∠ABC的平分线
∴∠CBP=
∠ABC
∵∠DCP是△BCP的外角
∴∠DCP=∠CBP+∠P
35°+
∠ABC=
∠ABC+∠P
∴∠P=35°.
故答案为:35°.
∴∠ACD=∠A+∠ABC=70°+∠ABC
∵CP是∠ACD的平分线
∴∠DCP=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∵BP是∠ABC的平分线
∴∠CBP=
| 1 |
| 2 |
∵∠DCP是△BCP的外角
∴∠DCP=∠CBP+∠P
35°+
| 1 |
| 2 |
| 1 |
| 2 |
∴∠P=35°.
故答案为:35°.
点评:考查三角形外角性质,角平分线的定义及三角形内角和定理.
练习册系列答案
相关题目