题目内容

二次函数y=ax2+bx+c的图象如图所示,以下结论:
①a+b+c=0;②4a+b=0;③abc<0;④4ac-b2<0;⑤当x≠2时,总有4a+2b>ax2+bx
其中正确的有________ (填写正确结论的序号).

①②④⑤
分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解答:①由图象可知:当x=1时y=0,
∴a+b+c=0.
∴正确;
②由图象可知:对称轴x=-=2,
∴4a+b=0,
∴正确;
由抛物线与x轴有两个交点可以推出b2-4ac>0,正确;
③由抛物线的开口方向向下可推出a<0
因为对称轴在y轴右侧,对称轴为x=->0,
又因为a<0,b>0;
由抛物线与y轴的交点在y轴的负半轴上,∴c<0,故abc>0,错误;
④由抛物线与x轴有两个交点可以推出b2-4ac>0
∴4ac-b2<0正确;
⑤∵对称轴为x=2,
∴当x=2时,总有y=ax2+bx+c=4a+2b+c>0,
∴4a+2b>ax2+bx正确.
故答案为:①②④⑤.
点评:此题考查学生掌握二次函数的图象与性质,考查了数形结合的数学思想,是一道中档题.解本题的关键是根据图象找出抛物线的对称轴.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网