题目内容
如图所示,直线AB、CD相交于点O,且∠AOD+∠BOC=100°,则∠AOC是
- A.150°
- B.130°
- C.100°
- D.90°
B
分析:两直线相交,对顶角相等,即∠AOD=∠BOC,已知∠AOD+∠BOC=100°,可求∠AOD;又∠AOD与∠AOC互为邻补角,即∠AOD+∠AOC=180°,将∠AOD的度数代入,可求∠AOC.
解答:∵∠AOD与∠BOC是对顶角,
∴∠AOD=∠BOC,
又已知∠AOD+∠BOC=100°,
∴∠AOD=50°.
∵∠AOD与∠AOC互为邻补角,
∴∠AOC=180°-∠AOD=180°-50°=130°.
故选B.
点评:本题考查对顶角的性质以及邻补角的定义,是一个需要熟记的内容.
分析:两直线相交,对顶角相等,即∠AOD=∠BOC,已知∠AOD+∠BOC=100°,可求∠AOD;又∠AOD与∠AOC互为邻补角,即∠AOD+∠AOC=180°,将∠AOD的度数代入,可求∠AOC.
解答:∵∠AOD与∠BOC是对顶角,
∴∠AOD=∠BOC,
又已知∠AOD+∠BOC=100°,
∴∠AOD=50°.
∵∠AOD与∠AOC互为邻补角,
∴∠AOC=180°-∠AOD=180°-50°=130°.
故选B.
点评:本题考查对顶角的性质以及邻补角的定义,是一个需要熟记的内容.
练习册系列答案
相关题目