题目内容
在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是 ( )
A.25π B.65π C.90π D.130π
AH是⊙O的直径,AE平分∠FAH,交⊙O于点E,过点E的直线FG⊥AF,垂足为F,B为直径OH上一点,点E、F分别在矩形ABCD的边BC和CD上.
(1)求证:直线FG是⊙O的切线;(5分)
(2)若CD=10,EB=5,求⊙O的直径.(5分)
如图,下列条件不能判定△ADB∽△ABC的是( )
A.∠ABD=∠ACB
B.∠ADB=∠ABC
C.
D.
如图,已知AB为⊙O的直径,∠E=20°,∠DBC=50°,则∠CBE= ,
已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是( )
A.x1=1,x2=﹣1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=3
如图,在四边形ABCD中,∠B=90°,AB=BC=4,CD=6,DA=2.求四边形ABCD的面积.
如图,在△ADB和△ADC中,下列条件:①BD=DC,AB=AC;②∠B=∠C,∠BAD=∠CAD;③∠B=∠C,BD=DC;④∠ADB=∠ADC,BD=DC.能得出△ADB≌△ADC的序号是 .
如图,在直角坐标系中,已知P(-2,-1),点T(t,0)是x轴上的一个动点.
(1)求点P关于原点的对称点M的坐标.
(2)已知点N(0,2)为y轴上的一点,求经过P、M、N三点的抛物线的解析式,并求出该抛物线的顶点坐标.
(3)点T在运动过程中,是否存在某个时刻使△MTO为等腰三角形?若存在,求出点T的坐标.若不存在,请说明理由.
计算:6x2÷2x= .