题目内容
生产某种产品每小时可生产100件,生产前没有积压,生产3小时后安排工人装箱,每小时可装150件,未装箱的产品数量为y(件)与时间t(时)的关系可用下面的图象来准确反映的是
- A.

- B.

- C.

- D.

A
分析:因为生产某种产品每小时可生产100件,生产前没有积压,生产3小时后安排工人装箱,每小时可装150件,所以生产前没有积压,图象匀速上升到一定程度开始下匀速降为0,由此即可求出答案.
解答:根据题意可知:生产前没有积压代表图象从0开始,生产3小时后安排工人装箱每小时可装150件代表图象匀速上升到一定程度开始下匀速降为0.
故选A.
点评:本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
分析:因为生产某种产品每小时可生产100件,生产前没有积压,生产3小时后安排工人装箱,每小时可装150件,所以生产前没有积压,图象匀速上升到一定程度开始下匀速降为0,由此即可求出答案.
解答:根据题意可知:生产前没有积压代表图象从0开始,生产3小时后安排工人装箱每小时可装150件代表图象匀速上升到一定程度开始下匀速降为0.
故选A.
点评:本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
练习册系列答案
相关题目
我市高新技术开发区的某公司,用480万元购得某种产品的生产技术后,并进一步投入资金1520万元购买生产设备,进行该产品的生产加工.已知生产这种产品每件还需成本费40元.经过市场调查发现:该产品的销售单价,需定在200元到300元之间较为合理,销售单价x元与年销售量y万件之间的变化可近似的看作是如下表所反映的一次函数:
(1)请求出y与x间的函数关系式;并直接写出自变量x的取值范围;
(2)请说明投资的第一年,该公司是盈利还是亏损?若赢利,最大利润是多少?若亏损,最少亏损多少?
(3)在(2)的前提下,即在第一年盈利最大或亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1790万元,若能,求出第二年的产品售价;若不能,请说明理由.
| 销售单价x(元) | 200 | 230 | 250 |
| 年销售量y(万件) | 10 | 7 | 5 |
(2)请说明投资的第一年,该公司是盈利还是亏损?若赢利,最大利润是多少?若亏损,最少亏损多少?
(3)在(2)的前提下,即在第一年盈利最大或亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1790万元,若能,求出第二年的产品售价;若不能,请说明理由.