ÌâÄ¿ÄÚÈÝ
£¨2012•Î÷ºþÇøÒ»Ä££©Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬µãA£¬B×ø±ê·Ö±ðΪ£¨8£¬4£©£¬£¨0£¬4£©£¬µãC£¬
DÔÚxÖáÉÏ£¬C£¨t£¬0£©£¬D£¨t+3£¬0£©£¨0£¼t¡Ü5£©£¬¹ýµãD×÷xÖáµÄ´¹Ïß½»Ïß¶ÎABÓÚµãE£¬½»OAÓÚµãG£¬Á¬½ÓCE½»OAÓÚµãF
£¨1£©ÇëÓú¬tµÄ´úÊýʽ±íʾÏß¶ÎAEÓëEFµÄ³¤£»
£¨2£©Èôµ±¡÷EFGµÄÃæ»ýΪ
ʱ£¬µãGÇ¡ÔÚy=
µÄͼÏóÉÏ£¬ÇókµÄÖµ£»
£¨3£©Èô´æÔÚµãQ£¨0£¬2t£©ÓëµãR£¬ÆäÖеãRÔÚ£¨2£©ÖеÄy=
µÄͼÏóÉÏ£¬ÒÔA£¬C£¬Q£¬RΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ¬ÇóRµãµÄ×ø±ê£®
£¨1£©ÇëÓú¬tµÄ´úÊýʽ±íʾÏß¶ÎAEÓëEFµÄ³¤£»
£¨2£©Èôµ±¡÷EFGµÄÃæ»ýΪ
| 12 |
| 5 |
| k |
| x |
£¨3£©Èô´æÔÚµãQ£¨0£¬2t£©ÓëµãR£¬ÆäÖеãRÔÚ£¨2£©ÖеÄy=
| k |
| x |
·ÖÎö£º£¨1£©ÅжϳöËıßÐÎBODEÊǾØÐΣ¬¸ù¾Ý¾ØÐεĶԱßÏàµÈ¿ÉµÃBE¡¢DEµÄ³¤¶È£¬ÔÙ¸ù¾ÝµãA¡¢µãDµÄ×ø±êÇó³öAB¡¢BEµÄ³¤¶È£¬È»ºó¸ù¾ÝAE=AB-BE£¬¼ÆËã¼´¿ÉÇó³öAE£¬Çó³öCDµÄ³¤¶È£¬È»ºóÀûÓù´¹É¶¨ÀíÇó³öCEµÄ³¤¶È£¬ÔÙ¸ù¾Ý¡÷OCFºÍ¡÷AEFÏàËÆ£¬ÀûÓÃÏàËÆÈý½ÇÐζÔÓ¦±ß³É±ÈÀýÁÐʽÇó³öEFÓëFCµÄ±ÈÖµ£¬¼´¿ÉµÃ½â£»
£¨2£©Çó³öÖ±ÏßOAµÄ½âÎöʽ£¬È»ºóÇó³öGDµÄ³¤¶È£¬´Ó¶ø¿ÉµÃEGµÄ³¤¶È£¬¹ýµãF×÷FH¡ÍGDÓÚµãH£¬¸ù¾Ý¡ÏCEDµÄÕýÏÒÖµÇó³öFHµÄ³¤¶È£¬ÔÙÀûÓá÷EFGµÄÃæ»ýÁÐʽÇó³ötµÄÖµ£¬¼´¿ÉµÃµ½µãDµÄ×ø±ê£¬È»ºóÀûÓôý¶¨ÏµÊý·¨Çó·´±ÈÀýº¯Êý½âÎöʽ½â´ð¼´¿É£»
£¨3£©µ±ACΪƽÐÐËıßÐεĶԽÇÏßʱ£¬¸ù¾ÝÖе㹫ʽÇó³öƽÐÐËıßÐεÄÖÐÐÄ×ø±ê£¬ÔÙ¸ù¾ÝÖÐÐÄÓëµãQµÄ×ø±êÇó³öµãRµÄ×ø±ê£¬È»ºó¸ù¾ÝµãRÔÚ·´±ÈÀýº¯ÊýͼÏóÉÏ£¬°ÑµãRµÄ×ø±ê´úÈë·´±ÈÀýº¯Êý½âÎöʽ£¬¼ÆËãÇó³ötµÄÖµ£¬¼´¿ÉµÃµ½µãRµÄ×ø±ê£¬µ±CQ¡¢AQΪƽÐÐËıßÐεĶԽÇÏßʱ£¬Í¬ÀíÇó½â¼´¿É£®
£¨2£©Çó³öÖ±ÏßOAµÄ½âÎöʽ£¬È»ºóÇó³öGDµÄ³¤¶È£¬´Ó¶ø¿ÉµÃEGµÄ³¤¶È£¬¹ýµãF×÷FH¡ÍGDÓÚµãH£¬¸ù¾Ý¡ÏCEDµÄÕýÏÒÖµÇó³öFHµÄ³¤¶È£¬ÔÙÀûÓá÷EFGµÄÃæ»ýÁÐʽÇó³ötµÄÖµ£¬¼´¿ÉµÃµ½µãDµÄ×ø±ê£¬È»ºóÀûÓôý¶¨ÏµÊý·¨Çó·´±ÈÀýº¯Êý½âÎöʽ½â´ð¼´¿É£»
£¨3£©µ±ACΪƽÐÐËıßÐεĶԽÇÏßʱ£¬¸ù¾ÝÖе㹫ʽÇó³öƽÐÐËıßÐεÄÖÐÐÄ×ø±ê£¬ÔÙ¸ù¾ÝÖÐÐÄÓëµãQµÄ×ø±êÇó³öµãRµÄ×ø±ê£¬È»ºó¸ù¾ÝµãRÔÚ·´±ÈÀýº¯ÊýͼÏóÉÏ£¬°ÑµãRµÄ×ø±ê´úÈë·´±ÈÀýº¯Êý½âÎöʽ£¬¼ÆËãÇó³ötµÄÖµ£¬¼´¿ÉµÃµ½µãRµÄ×ø±ê£¬µ±CQ¡¢AQΪƽÐÐËıßÐεĶԽÇÏßʱ£¬Í¬ÀíÇó½â¼´¿É£®
½â´ð£º½â£º£¨1£©¡ßµãA£¬B×ø±ê·Ö±ðΪ£¨8£¬4£©£¬£¨0£¬4£©£¬DE¡ÍxÖᣬ
¡àËıßÐÎBODEÊǾØÐΣ¬
¡àBE=OD£¬DE=OB£¬
ÓÖµãA£¨8£¬4£©£¬B£¨0£¬4£©£¬D£¨t+3£¬0£©£¬
¡àAB=8£¬BE=t+3£¬DE=4£¬
¡àAE=AB-BE=8-£¨t+3£©=5-t£¬
ÓÖCD=£¨t+3£©-t=3£¬
¸ù¾Ý¹´¹É¶¨Àí¿ÉµÃCE=
=5£¬
¡ßAB¡ÎCD£¬¡à¡÷OCF¡×¡÷AEF£¬
¡à
=
=
£¬
¡àEF=
¡Á5=5-t£»
£¨2£©ÓɵãA£¨8£¬4£©ÈÝÒ×Çó³öÖ±ÏßOAµÄ½âÎöʽΪy=
x£¬
¡ßµãD£¨t+3£¬0£©£¬
¡àGD=
£¨t+3£©£¬
EG=4-
£¨t+3£©=
£¨5-t£©£¬
¹ýF×÷FH¡ÍGD£¬½»GDÓÚµãH£¬
sin¡ÏCED=
=
£¬
¼´
=
£¬
½âµÃFH=
£¨5-t£©£¬
S¡÷EFG=
EG•FH=
¡Á
£¨5-t£©¡Á
£¨5-t£©=
£¨5-t£©2=
£¬
ÕûÀíµÃ£¬£¨5-t£©2=16£¬
½âµÃt1=1£¬t2=9£¨²»ºÏÌâÒ⣬ÉáÈ¥£©£¬
¡àGD=
£¨1+3£©=2£¬
¹ÊµãG£¨4£¬2£©£¬
°ÑµãG×ø±ê´úÈë·´±ÈÀýº¯Êý½âÎöʽµÃ£¬
=2£¬
½âµÃk=8£»
£¨3£©¢Ùµ±ACÊÇÆ½ÐÐËıßÐεĶԽÇÏßʱ£¬
¡ßµãA£¨8£¬4£©£¬C£¨t£¬0£©£¬
¡àƽÐÐËıßÐεÄÖÐÐÄ×ø±êÊÇ£¨
£¬2£©£¬
¡ßµãQ£¨0£¬2t£©£¬
¡àµãRµÄ×ø±êÊÇ£¨8+t£¬4-2t£©£¬
ÓÉ£¨2£©¿ÉÖª£¬·´±ÈÀýº¯Êý½âÎöʽΪy=
£¬
¡ßµãRÔÚ·´±ÈÀýº¯ÊýͼÏóÉÏ£¬
¡à£¨8+t£©£¨4-2t£©=8£¬
ÕûÀíµÃ£¬t2+6t-12=0£¬
½âµÃt1=-3-
£¨ÉáÈ¥£©£¬t2=-3+
£¬
¡ß8+t=8+£¨-3+
£©=5+
£¬4-2t=4-2£¨-3+
£©=10-2
£¬
¡àµãRµÄ×ø±êΪ£¨5+
£¬10-2
£©£¬
¢Úµ±CQÊÇÆ½ÐÐËıßÐεĶԽÇÏßʱ£¬
¡ßC£¨t£¬0£©£¬Q£¨0£¬2t£©£¬
¡àƽÐÐËıßÐεÄÖÐÐÄ×ø±êÊÇ£¨
£¬t£©£¬
¡ßµãA£¨8£¬4£©£¬
¡àµãRµÄ×ø±êÊÇ£¨t-8£¬2t-4£©£¬
¡ßµãRÔÚ·´±ÈÀýº¯Êýy=
ͼÏóÉÏ£¬
¡à£¨t-8£©£¨2t-4£©=8£¬
ÕûÀíµÃ£¬t2-10t+12=0£¬
½âµÃt1=5+
£¨ÉáÈ¥£©£¬t2=5-
£¬
¡ßt-8=5-
-8=-3-
£¬2t-4=2£¨5-
£©-4=6-2
£¬
¡àµãRµÄ×ø±êÊÇ£¨-3-
£¬6-2
£©£»
¢Ûµ±AQÊÇÆ½ÐÐËıßÐεĶԽÇÏßʱ£¬
¡ßA£¨8£¬4£©£¬Q£¨0£¬2t£©£¬
¡àƽÐÐËıßÐεÄÖÐÐÄ×ø±êÊÇ£¨4£¬2+t£©£¬
¡ßµãC£¨t£¬0£©£¬
¡àµãRµÄ×ø±êÊÇ£¨8-t£¬4+2t£©£¬
¡ßµãRÔÚ·´±ÈÀýº¯Êýy=
ͼÏóÉÏ£¬
¡à£¨8-t£©£¨4+2t£©=8£¬
ÕûÀíµÃ£¬t2-6t-12=0£¬
½âµÃt1=3-
£¨ÉáÈ¥£©£¬t2=3+
£¨ÉáÈ¥£©£¬
ËùÒÔ£¬´ËʱµãR²»´æÔÚ£¬
×ÛÉÏËùÊö£¬´æÔÚµãR£¨5+
£¬10-2
£©»ò£¬£¨-3-
£¬6-2
£©£¬Ê¹µÃÒÔA£¬C£¬Q£¬RΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ®
¡àËıßÐÎBODEÊǾØÐΣ¬
¡àBE=OD£¬DE=OB£¬
ÓÖµãA£¨8£¬4£©£¬B£¨0£¬4£©£¬D£¨t+3£¬0£©£¬
¡àAB=8£¬BE=t+3£¬DE=4£¬
¡àAE=AB-BE=8-£¨t+3£©=5-t£¬
ÓÖCD=£¨t+3£©-t=3£¬
¸ù¾Ý¹´¹É¶¨Àí¿ÉµÃCE=
| 32+42 |
¡ßAB¡ÎCD£¬¡à¡÷OCF¡×¡÷AEF£¬
¡à
| CF |
| EF |
| OC |
| AE |
| t |
| 5-t |
¡àEF=
| 5-t |
| 5-t+t |
£¨2£©ÓɵãA£¨8£¬4£©ÈÝÒ×Çó³öÖ±ÏßOAµÄ½âÎöʽΪy=
| 1 |
| 2 |
¡ßµãD£¨t+3£¬0£©£¬
¡àGD=
| 1 |
| 2 |
EG=4-
| 1 |
| 2 |
| 1 |
| 2 |
¹ýF×÷FH¡ÍGD£¬½»GDÓÚµãH£¬
sin¡ÏCED=
| FH |
| EF |
| CD |
| CE |
¼´
| FH |
| 5-t |
| 3 |
| 5 |
½âµÃFH=
| 3 |
| 5 |
S¡÷EFG=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 5 |
| 3 |
| 20 |
| 12 |
| 5 |
ÕûÀíµÃ£¬£¨5-t£©2=16£¬
½âµÃt1=1£¬t2=9£¨²»ºÏÌâÒ⣬ÉáÈ¥£©£¬
¡àGD=
| 1 |
| 2 |
¹ÊµãG£¨4£¬2£©£¬
°ÑµãG×ø±ê´úÈë·´±ÈÀýº¯Êý½âÎöʽµÃ£¬
| k |
| 4 |
½âµÃk=8£»
£¨3£©¢Ùµ±ACÊÇÆ½ÐÐËıßÐεĶԽÇÏßʱ£¬
¡ßµãA£¨8£¬4£©£¬C£¨t£¬0£©£¬
¡àƽÐÐËıßÐεÄÖÐÐÄ×ø±êÊÇ£¨
| 8+t |
| 2 |
¡ßµãQ£¨0£¬2t£©£¬
¡àµãRµÄ×ø±êÊÇ£¨8+t£¬4-2t£©£¬
ÓÉ£¨2£©¿ÉÖª£¬·´±ÈÀýº¯Êý½âÎöʽΪy=
| 8 |
| x |
¡ßµãRÔÚ·´±ÈÀýº¯ÊýͼÏóÉÏ£¬
¡à£¨8+t£©£¨4-2t£©=8£¬
ÕûÀíµÃ£¬t2+6t-12=0£¬
½âµÃt1=-3-
| 21 |
| 21 |
¡ß8+t=8+£¨-3+
| 21 |
| 21 |
| 21 |
| 21 |
¡àµãRµÄ×ø±êΪ£¨5+
| 21 |
| 21 |
¢Úµ±CQÊÇÆ½ÐÐËıßÐεĶԽÇÏßʱ£¬
¡ßC£¨t£¬0£©£¬Q£¨0£¬2t£©£¬
¡àƽÐÐËıßÐεÄÖÐÐÄ×ø±êÊÇ£¨
| t |
| 2 |
¡ßµãA£¨8£¬4£©£¬
¡àµãRµÄ×ø±êÊÇ£¨t-8£¬2t-4£©£¬
¡ßµãRÔÚ·´±ÈÀýº¯Êýy=
| 8 |
| x |
¡à£¨t-8£©£¨2t-4£©=8£¬
ÕûÀíµÃ£¬t2-10t+12=0£¬
½âµÃt1=5+
| 13 |
| 13 |
¡ßt-8=5-
| 13 |
| 13 |
| 13 |
| 13 |
¡àµãRµÄ×ø±êÊÇ£¨-3-
| 13 |
| 13 |
¢Ûµ±AQÊÇÆ½ÐÐËıßÐεĶԽÇÏßʱ£¬
¡ßA£¨8£¬4£©£¬Q£¨0£¬2t£©£¬
¡àƽÐÐËıßÐεÄÖÐÐÄ×ø±êÊÇ£¨4£¬2+t£©£¬
¡ßµãC£¨t£¬0£©£¬
¡àµãRµÄ×ø±êÊÇ£¨8-t£¬4+2t£©£¬
¡ßµãRÔÚ·´±ÈÀýº¯Êýy=
| 8 |
| x |
¡à£¨8-t£©£¨4+2t£©=8£¬
ÕûÀíµÃ£¬t2-6t-12=0£¬
½âµÃt1=3-
| 21 |
| 21 |
ËùÒÔ£¬´ËʱµãR²»´æÔÚ£¬
×ÛÉÏËùÊö£¬´æÔÚµãR£¨5+
| 21 |
| 21 |
| 13 |
| 13 |
µãÆÀ£º±¾ÌâÖµ·´±ÈÀýº¯Êý×ÛºÏÌâÐÍ£¬Ö÷񻃾¼°¾ØÐεÄÅж¨ÓëÐÔÖÊ£¬ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬¹´¹É¶¨ÀíµÄÓ¦Óã¬Èý½ÇÐεÄÃæ»ý£¬ÒÔ¼°´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽµÄ˼Ï룬ƽÐÐËıßÐεĶԽÇÏß»¥ÏàÆ½·ÖµÄÐÔÖÊ£¬£¨3£©ÀûÓÃÆ½ÐÐËıßÐεĶԽÇÏß»¥ÏàÆ½·ÖÇó³öÖÐÐĵÄ×ø±ê£¬ÔÙ¸ù¾ÝÏ߶εÄÖе㹫ʽÇó³öµãRµÄ×ø±êÊǽâÌâµÄ¹Ø¼ü£¬×¢ÒâÒª·ÖÇé¿öÌÖÂÛ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿