题目内容
计算=
解析
计算:.
以下是小辰同学阅读的一份材料和思考:
五个边长为1的小正方形如图①放置,用两条线段把它们分割成三部分(如图②),移动其中的两部分,与未移动的部分恰好拼接成一个无空隙无重叠的新正方形(如图③).
小辰阅读后发现,拼接前后图形的面积相等,若设新的正方形的边长为x(x>0),可得x2=5,x=.由此可知新正方形边长等于两个小正方形组成的矩形的对角线长.
参考上面的材料和小辰的思考方法,解决问题:
五个边长为1的小正方形(如图④放置),用两条线段把它们分割成四部分,移动其中的两部分,与未移动的部分恰好拼接成一个无空隙无重叠的矩形,且所得矩形的邻边之比为1:2.
具体要求如下:
(1)设拼接后的长方形的长为a,宽为b,则a的长度为 ;
(2)在图④中,画出符合题意的两条分割线(只要画出一种即可);
(3)在图⑤中,画出拼接后符合题意的长方形(只要画出一种即可)
如图,△ABC中,∠C=90°,点D在AC边上,DE∥AB,若∠ADE=46°,则∠B的度数是( )
A.34° B.44° C.46° D.54°
计算(1): ; (2):;
如图,矩形ABCD的对角线相交于点O,DE∥AC,CE//BD.求证:四边形OCED是菱形.
计算【小题1】 【小题2】
解方程:=