题目内容
四边形ABCD的对角线相交于点O,能判定它是正方形的条件是
- A.AB=BC=CD=DA
- B.AO=CO,BO=DO,AC⊥BD
- C.AC=BD,AC⊥BD且AC、BD互相平分
- D.AB=BC,CD=DA
C
分析:根据正方形的判定对角线互相垂直平分且相等的四边形是正方形,对各个选项进行分析从而得到最后的答案.
解答:A、错误,只能判定为菱形;
B、错误,只能判定为菱形;
C、正确,AC⊥BD且AC、BD互相平分可判定为菱形,再由AC=BD判定为正方形;
D、错误,可以判定为筝形,但筝形不是正方形;
故选C.
点评:本题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途经有两种:
①先说明它是矩形,再说明有一组邻边相等;
②先说明它是菱形,再说明它有一个角为直角.
分析:根据正方形的判定对角线互相垂直平分且相等的四边形是正方形,对各个选项进行分析从而得到最后的答案.
解答:A、错误,只能判定为菱形;
B、错误,只能判定为菱形;
C、正确,AC⊥BD且AC、BD互相平分可判定为菱形,再由AC=BD判定为正方形;
D、错误,可以判定为筝形,但筝形不是正方形;
故选C.
点评:本题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途经有两种:
①先说明它是矩形,再说明有一组邻边相等;
②先说明它是菱形,再说明它有一个角为直角.
练习册系列答案
相关题目