题目内容
如图,菱形ABCD的边长是5,两条对角线交于O点,且AO、BO的长分别是关于x的方程x2+(2m-1)x+m2+3=0的根,则m的值为
- A.-3
- B.5
- C.5或-3
- D.-5或3
A
分析:由题意可知:菱形ABCD的边长是5,则AO2+BO2=25,则再根据根与系数的关系可得:AO+BO=-2m+1,AO•BO=m2+3;代入AO2+BO2中,得到关于m的方程后,求得m的值.
解答:由勾股定理可得:AO2+BO2=25,
又有根与系数的关系可得:AO+BO=-2m+1,AO•BO=m2+3
∴AO2+BO2=(AO+BO)2-2AO•BO=(-2m+1)2-2(m2+3)=25,
整理得:m2-2m-15=0,
解得:m=-3或5.
又∵△>0,∴(2m-1)2-4(m2+3)>0,解得m<-
,
∴m=-3,
故本题选A.
点评:将菱形的性质与一元二次方程根与系数的关系,以及代数式变形相结合解题是一种经常使用的解题方法.
分析:由题意可知:菱形ABCD的边长是5,则AO2+BO2=25,则再根据根与系数的关系可得:AO+BO=-2m+1,AO•BO=m2+3;代入AO2+BO2中,得到关于m的方程后,求得m的值.
解答:由勾股定理可得:AO2+BO2=25,
又有根与系数的关系可得:AO+BO=-2m+1,AO•BO=m2+3
∴AO2+BO2=(AO+BO)2-2AO•BO=(-2m+1)2-2(m2+3)=25,
整理得:m2-2m-15=0,
解得:m=-3或5.
又∵△>0,∴(2m-1)2-4(m2+3)>0,解得m<-
∴m=-3,
故本题选A.
点评:将菱形的性质与一元二次方程根与系数的关系,以及代数式变形相结合解题是一种经常使用的解题方法.
练习册系列答案
相关题目
A、sinα=
| ||
B、cosα=
| ||
C、tanα=
| ||
D、tanα=
|