题目内容

如图,四边形ABCD内接于⊙O,BC为⊙O的直径,E为DC边上一点,若AE∥BC,AE=EC=7,AD=6.
(1)求AB的长;
(2)求EG的长.

解:(1)∵AE∥BC,
∴∠EAC=∠ACB,
又∵AE=EC,
∴∠EAC=∠ECA,
∴∠ACB=∠ACE,
∴AB=AD=6.

(2)如图:
延长BA,CD交于P,
∵AE∥BC,
∴∠EAC=∠ACB,
∵AE=EC,
∴∠EAC=∠ACE,
∴∠ACB=∠ACE,
又∵BC是直径,
∴∠BAC=90°,
∴AB=AP,PE=EC.
∴△GAE∽△GCB,且AE:BC=1:2.
∴BC=14.
在△ABC中,AC===4
AG=AC=
BG===
EG=BG=
分析:(1)根据两直线平行,内错角相等,以及三角形中等边对等角,用等量代换得到∠ACB=∠ACE,再用相等的圆周角所对的弧相等,所对的先相等求出AB的长.(2)根据等腰三角形的性质得到DE是△PBC的中位线,求出BC的长,再用勾股定理和相似三角形对应边的比进行计算求出EG的长.
点评:本题考查的是相似三角形的判定与性质,(1)根据平行线和圆周角的性质,得到AB=AD,求出AB的长.(2)先用等腰三角形的性质得到AB=AP,然后由AE∥BC,得到相似三角形,根据相似三角形的性质,利用勾股定理计算求出EG的长.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网