题目内容
若不等式组无解,则m的取值范围是( )
A. m>3 B. m<3 C. m≥3 D. m≤3
利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简单图形,其中是轴对称但不是中心对称的图形是( )
A. B. C. D.
已知,A、B、C、D是反比例函数y=(x>0)图象上四个整数点(横、纵坐标均为整数),分别过这些点向横轴或纵轴作垂线段,以垂线段所在的正方形(如图)的边长为半径作四分之一圆周的两条弧,组成四个橄榄形(阴影部分),则这四个橄榄形的面积总和是__________(用含π的代数式表示).
如图1,矩形ABCD中,AB=4,AD=5,E为BC上一点,BE:CE=3:2,连接AE,点P从点A出发,沿射线AB的方向以每秒1个单位长度的速度匀速运动,过点P作PF∥BC交直线AE于点F.
(1)线段AE= ;
(2)设点P的运动时间为t(s),EF的长度为y,求y关于t的函数关系式,并写出t的取值范围;
(3)当t为何值时,以F为圆心的⊙F恰好与直线AB、BC都相切?并求此时⊙F的半径;
(4)如图2,将△AEC沿直线AE翻折,得到△AEC',连结AC',如果∠ABF=∠CBC′,求t值.(直接写出答案,不要求解答过程).
观察下面由正整数组成的数阵:
照此规律,按从上到下、从左到右的顺序,第18行的第18个数是_____.
如图是一个圆柱体和一长方体组成的几何体,圆柱的下底面紧贴在长方体的上底面上,那么这个几何体的俯视图为( )
已知抛物线y=a(x2-cx-2c2)(a>0)交x轴于A、B两点(点A在点B的左侧),交y轴于点C.
(1) 取A(-1,0),则点B的坐标为___________;
(2) 若A(-1,0),a=1,点P为第一象限的抛物线,以P为圆心,为半径的圆恰好与AC相切,求P点坐标;
(3) 如图,点R(0,n)在y轴负半轴上,直线RB交抛物线于另一点D,直线RA交抛物线于E.若DR=DB,EF⊥y轴于F,求的值.
如图,为估算学校的旗杆的高度,身高米的小红同学沿着旗杆在地面的影子由向走去,当她走到点处时,她的影子的顶端正好与旗杆的影子的顶端重合,此时测得,,则旗杆的高度是( )
A. 6.4m B. 7m C. 8m D. 9m
如图,在△ABC中,AB=AC=13,DE是△ABC的中位线,F是DE的中点,已知B(-1,0),C(9,0),则点F的坐标为______________.