题目内容
当x=2时,整式px3+qx+1的值等于2002,那么当x=-2时,整式px3+qx+1的值为( )
| A.2001 | B.-2001 | C.2000 | D.-2000 |
x=2代入px3+qx+1=2002中得,
23p+2q+1=2002,即23p+2q=2001,
∴当x=-2时,
px3+qx+1=-23p-2q+1,
=-(23p+2q)+1,
=-2001+1,
=-2000.
故选D.
23p+2q+1=2002,即23p+2q=2001,
∴当x=-2时,
px3+qx+1=-23p-2q+1,
=-(23p+2q)+1,
=-2001+1,
=-2000.
故选D.
练习册系列答案
相关题目