题目内容
计算的结果是( )
A. 2 B. C. D. 1
如图,△ABC中,D是BC上一点,若AB=AC=CD,AD=BD,∠ADB的度数为 .
(8分)如图,在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于B和A,与反比例函数的图象交于C、D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=2.
(1)求直线AB和反比例函数的解析式;
(2)求△OCD的面积.
如图,在直角∠O的内部有一滑动杆AB,当端点A沿直线AO向下滑动时,端点B会随之自动地沿直线OB向左滑动,如果滑动杆从图中AB处滑动到A′B′处,那么滑动杆的中点C所经过的路径是( )
A. 直线的一部分 B. 圆的一部分 C. 双曲线的一部分 D. 抛物线的一部分
下列方程中,没有实数根的是( )
A. 3x+2=0 B. 2x+3y=5 C. x2+x﹣1=0 D. x2+x+1=0
某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级请根据两幅统计图中的信息回答下列问题:
本次抽样调查共抽取了多少名学生?
求测试结果为C等级的学生数,并补全条形图;
若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?
若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.
如图,函数y= (x<0)的图象与直线y= x+m相交于点A和点B.过点A作AE⊥x轴于点E,过点B作BF⊥y轴于点F,P为线段AB上的一点,连接PE、PF.若△PAE和△PBF的面积相等,且xP=﹣ ,xA﹣xB=﹣3,则k的值是( )
A. ﹣5 B. C. ﹣2 D. ﹣1
某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.
(1)求商场经营该商品原来一天可获利润多少元?
(2)设后来该商品每件降价x元,商场一天可获利润y元.
①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?
②求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元.
如图,AB∥CD,E为CD上一点,射线EF经过点A,EC=EA.若∠CAE=30°,则∠BAF=( )
A. 30° B. 40° C. 50° D. 60°