题目内容
如图,AB为⊙O的直径,点P在线段AB的延长线上,BP=OB=2,点M在⊙O上,PM交⊙O于另一点N,如果MO⊥AN,则tan∠OMN= .
已知、是一元二次方程的两个根,则等于( )
A. B. C.1 D.4
因式分解的结果是 .
(本小题满分6分)如图,E是△ABC的边AB上一点,以AE为直径的⊙O经过BC上的一点D,且OD∥AC,∠ADE的平分线DF交AB于G,交⊙O于F,且BD=BG.
(1)求证:AD平分∠BAC;
(2)求证:BC与⊙O相切.
二次函数y=x2+px+q中,由于二次项系数为1>0,所以在对称轴左侧,y随x增大而减小,从而得到y越大则x越小,在对称轴右侧,y随x增大而增大,从而得到y越大则x也越大,请根据你对这句话的理解,解决下面问题:若关于x的方程x2+px+q+1=0的两个实数根是m、n(m<n),关于x的方程x2+px+q-5=0的两个实数根是d、e(d<e),则m、n、d、e的大小关系是( ).
A.m<d<e<n B.d<m<n<e C.d<m<e<n D.m<d<n<e
甲种电影票每张20元,乙种电影票每张15元,若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了 张.
(10分)如图,已知二次函数y=ax2+bx+8(a≠0)的图象与x轴交于点A(﹣2,0),B,与y轴交于点C,tan∠ABC=2.
(1)求抛物线的解析式及其顶点D的坐标;
(2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得经过点P的直线PM垂直于直线CD,且与直线OP的夹角为75°?若存在,求出点P的坐标;若不存在,请说明理由;
(3)过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴向上平移,使抛物线与线段EF总有公共点.试探究:抛物线最多可以向上平移多少个单位长度?
如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于( ).
A.5:8 B.3:8 C.3:5 D.2:5
小明、小虎、小红三人排成一排拍照片,小明站在中间的概率是 .