题目内容
如图,在△ABC中,∠A=50°,点D、E分别在AB、AC上,则∠1+∠2等于( )
A.130° B.230° C.180° D.310°
如图,将宽为1cm的纸条沿BC折叠,使∠CAB=45°,则折叠后重叠部分的面积为( )
A. cm2 B. cm2 C. cm2 D. cm2
如图,在Rt△ABC依次进行轴对称(对称轴为y轴)、一次平移和以点O为位似中心进行位似变换得到△OA′B′.
(1)在坐标系中分别画出以上变换中另外两个图形;
(2)设P(a,b)为△ABC边上任意一点,依次写出这三次变换后点P对应点的坐标.
图为人民公园中的荷花池,现要测量此荷花池两旁A、B两棵树间的距离(我们不能直接量得).请你根据所学知识,以卷尺和测角仪为测量工具设计一种测量方案.
要求:(1)画出你设计的测量平面图;
(2)简述测量方法,并写出测量的数据(长度用…表示;角度用…表示);
(3)根据你测量的数据,计算A、B两棵树间的距离.
如图,铁路上AB两站相距25km,CD为铁路同旁的两个村庄,DA⊥AB于A,CB⊥AB于B,DA=15km,BC=10km,要在铁路AB上建一个土特产口收购站E,使C、D两站到E站的距离相等,则E站应建在距A站 km处.
如图,AF是△ABC的高,AD是△ABC的角平分线,且∠B=36°,∠C=76°,求∠DAF的度数。
如图,△ABC≌△DEF,A与D,B与E分别是对应顶点,∠B=,∠A=,AB=13cm,则∠F= 度,DE= cm。
我市某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家惠农政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
如图,在平面直角坐标系中,以原点为位似中心,将线段CD放大得到线段AB,若点B、C、D的坐标分别为B(5,0)、C(1,2)、D(2,0),则点A的坐标是( )
A.(2.5,5) B.(2.5,3) C.(3,5) D.(2.5,4)