题目内容

如图是用四个相同的矩形和一个正方形拼成的图案,已知此图案的总面积是49,小正方形的面积是4,x,y分别表示矩形的长和宽,那么下面式子中不正确的是


  1. A.
    x+y=7
  2. B.
    x-y=2
  3. C.
    4xy+4=49
  4. D.
    x2+y2=25
D
分析:根据大正方形的面积与小正方形的面积的表示,四个矩形的面积的和的两种不同的表示方法列式,然后整理,对各选项分析判断后利用排除法.
解答:A、∵此图案的总面积是49,
∴(x+y)2=49,
∴x+y=7,故本选项正确,不符合题意;
B、∵小正方形的面积是4,
∴(x-y)2=4,
∴x-y=2,故本选项正确,不符合题意;
C、根据题得,四个矩形的面积=4xy,
四个矩形的面积=(x+y)2-(x-y)2=49-4,
∴4xy=49-4,
即4xy+4=49,故本选项正确,不符合题意;
D、∵(x+y)2+(x-y)2=49+4,
∴2(x2+y2)=53,
解得x2+y2=26.5,故本选项错误,符合题意.
故选D.
点评:本题考查了完全平方公式的几何背景,根据同一个图形的面积的不同表示方法列出算式是解题的关键.
练习册系列答案
相关题目

在前面的学习中,我们通过对同一面积的不同表达和比较,根据图①和图②发现并验证了平方差公式和完全平方公式

这种利用面积关系解决问题的方法,使抽象的数量关系因集合直观而形象化。

【研究速算】

提出问题:47×43,56×54,79×71,……是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?

几何建模:

用矩形的面积表示两个正数的乘积,以47×43为例:

(1)画长为47,宽为43的矩形,如图③,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形的上面。

(2)分析:原矩形面积可以有两种不同的表达方式,47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果。

归纳提炼:

两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述)        .

【研究方程】

提出问题:怎么图解一元二次方程

几何建模:

(1)变形:

(2)画四个长为,宽为的矩形,构造图④

(3)分析:图中的大正方形面积可以有两种不同的表达方式,或四个长,宽的矩形之和,加上中间边长为2的小正方形面积

即:

归纳提炼:求关于的一元二次方程的解

要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图,并标注相关线段的长)

【研究不等关系】

提出问题:怎么运用矩形面积表示的大小关系(其中)?

几何建模:

(1)画长,宽的矩形,按图⑤方式分割

(2)变形:

(3)分析:图⑤中大矩形的面积可以表示为;阴影部分面积可以表示为

画点部分的面积可表示为,由图形的部分与整体的关系可知:,即

归纳提炼:

时,表示的大小关系

根据题意,设,要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图,并标注相关线段的长)

 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网