题目内容

已知二次函数y=ax2+bx+c的图象如图,则下列5个代数式:ac,a+b+c,4a-2b+c,2a+b,2a-b,其值大于0的个数为


  1. A.
    3
  2. B.
    2
  3. C.
    5
  4. D.
    4
B
分析:由开口向上知a>0,由与y轴交于原点得到c=0,然后即可判断ac的符号;
由当x=1时,y<0,即可判断a+b+c的符号;
由当x=-2时,y>0,即可判断4a-2b+c的符号;
由开口向上知a>0,由->1可以推出2a+b<0;
由开口向上知a>0,->0可以推出2a与b的符号,即可确定2a-b的符号.
解答:①∵开口向上,
∴a>0,
∵与y轴交于原点,
∴c=0,
∴ac=0;
故本选项错误;
②当x=1时,y=a+b+c<0,
∴a+b+c<0;
故本选项错误;
③当x=-2时,y>0,
∴4a-2b+c>0;
故本选项正确;
④∵a>0,->1,
∴-b>2a,
∴b<-2a
∴2a+b<0;
故本选项错误;
⑤∵a>0,->0,
∴b<0,
∴2a-b>0.
故本选项正确;
综上所述,在ac,a+b+c,4a-2b+c,2a+b,2a-b中,其值大于0的个数为2个;
故选B.
点评:本题考查了二次函数图象与系数的关系:
①a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0;
②b由对称轴和a的符号确定:由对称轴公式x=判断符号
③c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0
④b2-4ac由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网