搜索
题目内容
若线段a是3和9的比例中项,则a的值为( )
A.
-3
3
B.
±3
3
C.3
3
D.±3
试题答案
相关练习册答案
分析:
根据a
2
等于3和9的积计算可得a的值.
解答:
解:a
2
=3×9,
解得a=±3
3
,
∵a是线段,
∴a=3
3
故选C.
点评:
考查比例线段的知识;掌握比例线段中比例中项的计算方法是解决本题的关键.
练习册系列答案
高分计划一卷通系列答案
单元测评卷精彩考评七年级下数学延边教育出版社系列答案
王朝霞期末真题精编系列答案
各地期末名卷精选系列答案
导与练初中同步练案系列答案
满分夺冠期末测试卷系列答案
优生乐园系列答案
钟书金牌上海新卷系列答案
加分猫汇练系列答案
金博士1课3练单元达标测试题系列答案
相关题目
(2013•贵港一模)已知:m、n是方程x
2
-6x+5=0的两个实数根,且m<n,抛物线y=-x
2
+bx+c的图象经过点A(m,0)、B(0,n).
(1)求这个抛物线的解析式;
(2)设(1)中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和△BCD的面积;(注:抛物线y=ax
2
+bx+c(a≠0)的顶点坐标为
(-
b
2a
,
4ac-
b
2
4a
)
(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH分成面积之比为2:3的两部分,请求出P点的坐标.
(2012•河北)如图,点E是线段BC的中点,分别以BC为直角顶点的△EAB和△EDC均是等腰三角形,且在BC同侧.
(1)AE和ED的数量关系为
AE=ED
AE=ED
;AE和ED的位置关系为
AE⊥ED
AE⊥ED
;
(2)在图1中,以点E为位似中心,作△EGF与△EAB位似,点H是BC所在直线上的一点,连接GH,HD.分别得到图2和图3.
①在图2中,点F在BE上,△EGF与△EAB的相似比1:2,H是EC的中点.求证:GH=HD,GH⊥HD.
②在图3中,点F在的BE延长线上,△EGF与△EAB的相似比是k:1,若BC=2,请直接写CH的长为多少时,恰好使GH=HD且GH⊥HD(用含k的代数式表示).
(2013•绵阳)我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.重心有很多美妙的性质,如关于线段比.面积比就有一些“漂亮”结论,利用这些性质可以解决三角形中的若干问题.请你利用重心的概念完成如下问题:
(1)若O是△ABC的重心(如图1),连结AO并延长交BC于D,证明:
AO
AD
=
2
3
;
(2)若AD是△ABC的一条中线(如图2),O是AD上一点,且满足
AO
AD
=
2
3
,试判断O是△ABC的重心吗?如果是,请证明;如果不是,请说明理由;
(3)若O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC的顶点重合)(如图3),S
四边形BCHG
,S
△AGH
分别表示四边形BCHG和△AGH的面积,试探究
S
四边形BCHG
S
△AGH
的最大值.
(2012•邯郸一模)已知:如图,抛物线y=-x
2
+bx+c的图象经过点A(1,0),B (0,5)两点,该抛物线与x轴的另一交点为C.
(1)求这个抛物线的解析式和点C的坐标;
(2)在x轴上方的抛物线上有一动点D,其横坐标为m,设由A、B、C、D组成的四边形的面积为S.试求S与m的函数关系式,并说明m为何值时,S最大;
(3)P是线段OC上的一动点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH分成面积之比为2:3的两部分,请直接写出P点的坐标.
若点C是线段AB的黄金分割点,C靠近A点,则三条线段AC、BC和AB的比例关系是________,黄金比是________.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案