题目内容
边长为a的正三角形的内切圆半径是________.
分析:根据等边三角形的三线合一,可以构造一个由其内切圆的半径、外接圆的半径和半边组成的30°的直角三角形,利用锐角三角函数关系求出内切圆半径即可.
解答:
则∠OBD=30°,BD=
∴tan∠BOD=
∴内切圆半径OD=
点评:此题主要考查了三角形的内切圆,注意:根据等边三角形的三线合一,可以发现其内切圆的半径、外接圆的半径和半边正好组成了一个30°的直角三角形.
练习册系列答案
相关题目
以边长为2厘米的正三角形的高为边长作第二个正三角形,以第二个正三角形的高为边长作第三个正三角形,以此类推,则第十个正三角形的边长是( )
A、2×(
| ||||
B、2×(
| ||||
C、2×(
| ||||
D、2×(
|
以边长为2厘米的正三角形的高为边长作第二个正三角形,以第二个正三角形的高为边长作第三个正三角形,以此类推,则第四个正三角形的边长是( )
A、3×(
| ||||
B、
| ||||
C、
| ||||
D、3×(
|