题目内容
下列事件是必然事件的为( )
A.明天太阳从西方升起
B.掷一枚硬币,正面朝上
C.任意一个三角形,它的内角和等于180°
D.打开电视机,正在播放“安徽新闻”
下列计算中,正确的是( )
A.a2a3=a6 B.a6÷a3=a2 C.(-a2)3=-a6 D.
计算:-10-(-6)=__________
如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2;
(1)把△ABC绕点O顺时针旋转90°得到△A1B1C1;
(2)以图中的O为位似中心,在△A1B1C1的同侧将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2.
某公司要在如图所示的五角星(∠A=∠D=∠H=∠G=∠E=36°,AB=AC=CE=EF=FG=GI=HI=HK=DK=DB)中,沿边每隔25厘米装一盏闪光灯,若BC=(-1)米,则需要安装闪光灯( )
A.79盏 B.80盏 C.81盏 D.82盏
如图,在平面直角坐标系中,直线y=x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线y=-x2+bx+c交x轴于另一点C,点D是抛物线的顶点.
(1)求此抛物线的解析式;
(2)点P是直线AB上方的抛物线上一点(不与点A、B重合),过点P作x轴的垂线交x轴于点H,交直线AB于点F,作PG⊥AB于点G.求出△PFG的周长最大值;
(3)在抛物线上是否存在除点D以外的点M,使得△ABM与△ABD的面积相等?若存在,请求出此时点M的坐标;若不存在,请说明理由.
(1)计算:
(2)先化简,再求值,其中的值是方程的根.
如图1,△ABC中,AD为BC边上的的中线,则S△ABD= S△ADC.
实践探究
(1)在图2中,E、F分别为矩形ABCD的边AD、BC的中点,则S阴和S矩形ABCD之间满足的关系式为 ;
(2)在图3中,E、F分别为平行四边形ABCD的边AD、BC的中点,则S阴和S平行四边形ABCD之间满足的关系式为 ;
(3)在图4中,E、F分别为任意四边形ABCD的边AD、BC的中点,则S阴和S四边形ABCD之间满足的关系式为 ;
解决问题:
(4)在图5中,E、G、F、H分别为任意四边形ABCD的边AD、AB、BC、CD的中点,并且图中阴影部分的面积为20平方米,求图中四个小三角形的面积和是多少?即求S1+ S2+ S3+ S4=?
如图,分别以△ABC的三边为边在BC的同侧作正△BCE、正△ABF和正△ACD,已知BC=3,高AH=1,则五边形BCDEF的面积是( )
A. B. C.6 D.