题目内容
| 5 |
| 5 |
分析:要求蚂蚁爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果.
解答:
解:由题意知,底面圆的直径为2r,故底面周长等于2rπ,
设圆锥的侧面展开后的扇形圆心角为n°,
根据底面周长等于展开后扇形的弧长得,2rπ=
,
解得n=180,
所以展开图中扇形的圆心角为180°,
∴∠AOC=90°,
AC=
=
r.
故答案为:
r.
设圆锥的侧面展开后的扇形圆心角为n°,
根据底面周长等于展开后扇形的弧长得,2rπ=
| nπ×2r |
| 180 |
解得n=180,
所以展开图中扇形的圆心角为180°,
∴∠AOC=90°,
AC=
| AO2+CO2 |
| 5 |
故答案为:
| 5 |
点评:此题主要考查了平面展开图最短路径,把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决是解题关键.
练习册系列答案
相关题目
A、
| ||||
B、
| ||||
C、
| ||||
D、3
|