题目内容
【题目】如图,已知抛物线y=ax2+bx+1与x轴分别交于A(﹣1,0),B(3,0),与y轴交于点C.
(1)求抛物线解析式;
(2)在直线BC上方的抛物线上有点P,使△PBC面积为1,求出点P的坐标.
![]()
【答案】(1)y=﹣
x2+
x+1;(2)点P的坐标为(1,
)或(2,1).
【解析】
(1)根据抛物线y=ax2+bx+1与x轴分别交于A(-1,0),B(3,0),可以求得该抛物线的解析式;
(2)根据题意和(1)中的抛物线解析式可以求得点C的坐标,从而可以得到直线BC的函数解析式,然后根据在直线BC上方的抛物线上有点P,使△PBC面积为1,即可求得点P的坐标.
(1)∵抛物线y=ax2+bx+1与x轴分别交于A(-1,0),B(3,0),
∴
,解得,
,
∴抛物线的解析式为y=-
x2+
x+1;
(2)∵y=-
x2+
x+1,
∴当x=0时,y=1,
即点C的坐标为(0,1),
∵B(3,0),C(0,1),
∴直线BC的解析式为:y=
x+1,
设点P的坐标为(p,-
p2+
p+1),
将x=p代入y=
x+1得y=
p+1,
∵△PBC面积为1,
∴
,
解得,p1=1,p2=2,
当p1=1时,点P的坐标为(1,
),
当p2=2时,点P的坐标为(2,1),
即点P的坐标为(1,
)或(2,1).
【题目】如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=6cm,设弦AP的长为xcm,△APO的面积为ycm2,(当点P与点A或点B重合时,y的值为0).小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整;
![]()
(1)通过取点、画图、测量、计算,得到了x与y的几组值,如下表:
x/cm | 0.5 | 1 | 2 | 3 | 3.5 | 4 | 5 | 5.5 | 5.8 |
y/cm2 | 0.8 | 1.5 | 2.8 | 3.9 | 4.2 | m | 4.2 | 3.3 | 2.3 |
那么m= ;(保留一位小数)
(2)建立平面直角坐标系,描出以表中各组对应值为坐标的点,画出该函数图象.
(3)结合函数图象说明,当△APO的面积是4时,则AP的值约为 .(保留一位小数)