题目内容
已知:如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S米2.则S与x的函数关系式 ;自变量的取值范围 .
化简的结果是( )
A. B. C. D.
如图,在高楼AB前D点测得楼顶A的仰角为30°,向高楼前进60米到C点,又测得楼顶A的仰角为60°,则该高楼AB的高度为 米.
【问题情境】
张老师给爱好学习的小林和小兰提出这样一个问题:如图①,在△ABC中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.
小林的证明思路是:如图②,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
小兰的证明思路是:如图②,过点P作PG⊥CF,垂足为G,通过证明四边形PDFG是矩形,
可得:PD=GF,PE=CG,则PD+PE=CF.
【变式探究】如图③,当点P在BC延长线上时,其余条件不变,求证:PD-PE=CF;
【结论运用】请运用上述解答中所积累的经验和方法完成下列两题:
如图④,在平面直角坐标系中有两条直线l1:y=x+3、l2:y=-3x+3,若l2上的一点M到l1的距离是1,请运用上述的结论求出点M的坐标.
(1)化简:
(2)解不等式组:.
如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于( )
A.3.5 B.4 C.7 D.14
如图(1),一正方形纸板ABCD的边长为4,对角线AC、BD交于点O,一块等腰直角三角形的三角板的一个顶点处于点O处,两边分别与线段AB、AD交于点E、F,设BE=x.
(1)若三角板的直角顶点处于点O处,如图(2).判断三角形EOF的形状,并说明理由.
(2)在(1)的条件下,若三角形EOF的面积为S,求S关于x的函数关系式.
(3)若三角板的锐角顶点处于点O处,如图(3).
①若DF=y,求y关于x的函数关系式,并写出自变量的取值范围;
②探究直线EF与正方形ABCD的内切圆的位置关系,并证明你的结论.
如图,l1∥l2,∠1=120°,∠2=100°,则∠3=( )
A.20° B.40° C.50° D.60°
△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是( )
A. 80° B. 160° C. 100° D. 80°或100°