题目内容

已知,如图,点C在线段AB上,在AB的同旁作等边△ADC和等边△BCE,连接AE、BD交CD、CE于M、N,
(1)求证:AE=BD;
(2)求证:△CMN为等边三角形;
(3)如果把△BEC绕着C点旋转任意角度,上述结论中哪些成立?试说明理由.
分析:(1)根据等边三角形性质推出AC=CD,BC=CE,∠DCA=∠ECB=60°,求出∠ACE=∠DCB,根据SAS证△ACE≌△DCB即可;
(2)求出∠ECD=60°,推出∠AEC=∠DBC,证△EMC≌△BNC,推出CN=CM即可.
(3)结论(1)正确,根据(1)的推理过程即可得出答案.
解答:(1)证明:∵等边△ADC和△BCE,
∴AC=CD,BC=CE,∠DCA=∠ECB=60°,
∴∠DCA+∠DCE=∠ECB+∠DCE,
∴∠ACE=∠DCB,
在△ACE和△DCB中
AC=DC
∠ACE=∠DCB
CE=BC

∴△ACE≌△DCB,
∴AE=BD.

(2)证明:∵△ACE≌△DCB,
∴∠DBC=∠AEC,
∵∠DCE=180°-∠ACD-∠BCE=60°=∠BCE,
在△EMC和△BNC中
∠ECB=∠ECM
∠AEC=∠CBD
EC=BC

∴△EMC≌△BNC,
∴CM=CN,
∵∠MCN=60°,
∴△CMN是等边三角形.

(3)结论(1)成立,
理由是:不论旋转多少度,AC=CD,BC=CE,∠DCA=∠ECB=60°,
推出∠ACE=∠BCD,
∴△ACE≌△DCB,
∴AE=BD.
点评:本题考查了对全等三角形的性质和判定,等边三角形的性质和判定的应用,主要培养学生运用性质进行推理的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网