题目内容
如图,在Rt△ABC中,∠BAC=90°,AB=AC=4,D是BC的中点,点E在BA的延长线上,连接ED,若AE=2,则DE的长为_____.
关于二次函数,下列说法正确的是( )
A. 图像与轴的交点坐标为 B. 图像的对称轴在轴的右侧
C. 当时,的值随值的增大而减小 D. 的最小值为-3
用科学记数法表示下列各数.
(1); (2);
(3); (4).
下列说法:
①与互为相反数;②任何有理数都可以用数轴上的点表示;
③一定比大;④近似数精确到百分位.
其中正确的个数是( )
A. 个 B. 个 C. 个 D. 个
科技改变世界.2017年底,快递分拣机器人从微博火到了朋友圈,据介绍,这些机器人不仅可以自动规划最优路线,将包裹准确地放入相应的格口,还会感应避让障碍物,自动归队取包裹.没电的时候还会自己找充电桩充电.某快递公司启用80台A种机器人、300台B种机器人分拣快递包裹.A,B两种机器人全部投入工作,1小时共可以分拣1.44万件包裹,若全部A种机器人工作3小时,全部B种机器人工作2小时,一共可以分拣3.12万件包裹.
(1)求两种机器人每台每小时各分拣多少件包裹;
(2)为了进一步提高效率,快递公司计划再购进A,B两种机器人共200台,若要保证新购进的这批机器人每小时的总分拣量不少于7000件,求最多应购进A种机器人多少台?
魏晋时期的数学家刘徽首创割圆术.为计算圆周率建立了严密的理论和完善的算法.作圆内接正多边形,当正多边形的边数不断增加时,其周长就无限接近圆的周长,进而可用来求得较为精确的圆周率.祖冲之在刘徽的基础上继续努力,当正多边形的边数增加24576时,得到了精确到小数点后七位的圆周率,这一成就在当时是领先其他国家一千多年,如图,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是( )
A. 0.5 B. 1 C. 3 D. π
下列调查中,最适合采用普查方式的是( )
A. 对太原市民知晓“中国梦”内涵情况的调查
B. 对全班同学1分钟仰卧起坐成绩的调查
C. 对2018年央视春节联欢晚会收视率的调查
D. 对2017年全国快递包裹产生的包装垃圾数量的调查
在平行四边形中,,,,则________.
解下列方程:
(1)
(2)2-8=0
(3)
(4)