题目内容
把下列各式分解因式:(1)4a2bc-8ab+32b2;
(2)x(a-b)(b-c)-y(b-a)(b-c);
(3)x4-81;
(4)
| a2 |
| 4 |
(5)2x3-18xy2;
(6)-y3-
| 1 |
| 4 |
分析:(1)提取公因式4b即可;
(2)提取公因式(a-b)(b-c);
(3)两次利用平方差公式进行因式分解;
(4)利用完全平方公式因式分解;
(5)提取公因式2x,再利用平方差公式继续分解;
(6)先提取公因式-y,再利用完全平方公式继续分解.
(2)提取公因式(a-b)(b-c);
(3)两次利用平方差公式进行因式分解;
(4)利用完全平方公式因式分解;
(5)提取公因式2x,再利用平方差公式继续分解;
(6)先提取公因式-y,再利用完全平方公式继续分解.
解答:解:(1)4a2bc-8ab+32b2=4b(a2c-2a+8b);
(2)x(a-b)(b-c)-y(b-a)(b-c),
=x(a-b)(b-c)+y(a-b)(b-c),
=(a-b)(b-c)(x+y);
(3)x4-81,
=(x2+9)(x2-9),
=(x2+9)(x+3)(x-3);
(4)
-ab+b2=(
-b)2;
(5)2x3-18xy2,
=2x(x2-9y2),
=2x(x+3y)(x-3y);
(6)-y3-
y+y2,
=-y(y2-y+
),
=-y(y-
)2.
(2)x(a-b)(b-c)-y(b-a)(b-c),
=x(a-b)(b-c)+y(a-b)(b-c),
=(a-b)(b-c)(x+y);
(3)x4-81,
=(x2+9)(x2-9),
=(x2+9)(x+3)(x-3);
(4)
| a2 |
| 4 |
| a |
| 2 |
(5)2x3-18xy2,
=2x(x2-9y2),
=2x(x+3y)(x-3y);
(6)-y3-
| 1 |
| 4 |
=-y(y2-y+
| 1 |
| 4 |
=-y(y-
| 1 |
| 2 |
点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
练习册系列答案
相关题目