题目内容
如图,正方形ABCD的四个顶点分别在四条平行线
、
、
、
上,这四条直线中相邻两条之间的距离依次为
、
、
(
>0,
>0,
>0).
(1)求证:
=
;
(2)设正方形ABCD的面积为S,求证:S=
;
(3)若
,当
变化时,说明正方形ABCD的面积S随
的变化情况.![]()
(1)过A点作AF⊥l3分别交l2、l3于点E、F,过C点作CG⊥l3交l3于点G,
∵l2∥l3,∴∠2 =∠3,∵∠1+∠2=90°,∠4+∠3=90°,∴∠1=∠4,又∵∠BEA=∠DGC=90°, BA=DC,∴△BEA≌△DGC,∴AE=CG,即
=
;
(2)∵∠FAD+∠3=90°,∠4+∠3=90°,∴∠FAD =∠4,又∵∠AFD=∠DGC=90°, AD=DC,∴△AFD≌△DGC,∴DF=CG,∵AD2=AF2+FD2,∴S=
;
(3)由题意,得
, 所以
,
又
,解得0<h1<![]()
∴当0<h1<
时,S随h1的增大而减小;
当h1=
时,S取得最小值
;
当
<h1<
时,S随h1的增大而增大.
解析
练习册系列答案
相关题目