题目内容
已知a、b、c为实数,且| ab |
| a+b |
| 1 |
| 3 |
| bc |
| b+c |
| 1 |
| 4 |
| ca |
| c+a |
| 1 |
| 5 |
| abc |
| ab+bc+ca |
分析:要求
的值,可先求出其倒数的值,根据
=
,
=
,
=
,分别取其倒数即可求解.
| abc |
| ab+bc+ca |
| ab |
| a+b |
| 1 |
| 3 |
| bc |
| b+c |
| 1 |
| 4 |
| ca |
| c+a |
| 1 |
| 5 |
解答:解:将已知三个分式分别取倒数得:
=3,
=4,
=5,
即
+
=3,
+
=4,
+
=5,
将三式相加得;
+
+
=6,
通分得:
=6,
即
=
.
| a+b |
| ab |
| b+c |
| bc |
| c+a |
| ca |
即
| 1 |
| a |
| 1 |
| b |
| 1 |
| b |
| 1 |
| c |
| 1 |
| c |
| 1 |
| a |
将三式相加得;
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
通分得:
| ab+bc+ca |
| abc |
即
| abc |
| ab+bc+ca |
| 1 |
| 6 |
点评:本题考查了分式的化简求值,难度不大,关键是通过先求其倒数再进一步求解.
练习册系列答案
相关题目