题目内容
“学宫”楼阶梯教室,第一排有m个座位,后面每一排都比前面一排多4个座位,则第n排座位数是( )
A. m+4 B. m+4n C. n+4(m﹣1) D. m+4(n﹣1)
如图,直径为10的⊙A经过点C和点O,点B是y轴右侧⊙A优弧上一点,∠OBC=30°,则点A的坐标为( )
A. (,) B. (,)
C. (5,) D. (,)
如图,AB与⊙O相切于点C,∠A=∠B,⊙O的半径为6,AB=16,求OA的长.
“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.
例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n有多少个点?
我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n中黑点的个数分别是 、 .
请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:
(1)第5个点阵中有 个圆圈;第n个点阵中有 个圆圈.
(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.
一动点P从数轴上表示﹣2的点A 1开始移动,第一次先向左移动1个单位,再向右移动2个单位到达点A 2;第二次从点A 2向左移动3个单位,再向右移动4个单位到达点A 3;第三次从点A 3向左移动5个单位,再向右移动6个单位到达点A 4,…,点P按此规律移动,那么:(1)第一次移动后这个点P在数轴上表示的数是_____;(2)第二次移动后这个点P在数轴上表示的数是_______;(3)这个点P移动到点A n时,点A n在数轴上表示的数是_____.
如图,对于直线AB,线段CD,射线EF,其中能相交的图是( )
A. B. C. D.
在数﹣(﹣3),0,(﹣3)2,|﹣9|,﹣14中,正数的有( )个.
A. 2 B. 3 C. 4 D. 5
已知直线m∥n,将一块含30°角的直角三角板ABC,按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=18°,则∠2的度数为_____
一个几何体由一些完全相同的小立方块搭成,从正面和从上面看到的这个几何体的形状如下,那么搭成这样一个几何体,最少需要_____个这样的小立方块,最多需要_____个这样的小立方块.