题目内容
如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠4=70°,则∠3等于( )
A、40° B、50° C、70° D、80°
用科学计数法表示为( )
A、 B、 C、 D、
如题10图,已知正△ABC的边长为2,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设 △EFG的面积为y,AE的长为x,则y关于x的函数图象大致是( )
(1)计算:(-)-2-(π-3.14)0-+2×cos60°
(2)解方程:8-5(x-2)=4(x-1)+13.
如图,在矩形ABCD中,AB=4,BC=6,E为AB中点,动点P从点B开始沿BC方向运动到点C停止,动点Q从点C开始沿CD-DA方向运动,与点P同时出发,同时停止.这两点的运动速度均为每秒1个单位.若设他们的运动时间为x(秒),△EPQ的面积为y,则y与x之间的函数关系的图象大致是( )
有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=。 将这副直角三角板按如图(1)所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.
(1)如图(3),在三角板DEF;运动过程中,当EF经过点C时,∠FCB= 度;BF= ;
(2)如图(2)在三角板DEF运动过程中,EF与BC交于点M,过点M做MN⊥AB于点N,设BF=x,用x的代数式表示MN;
(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x的取值范围.
如图,在平面直角坐标系xoy中,菱形ABDC的边AB在x轴上,顶点C在y轴上,A(-6,0),C(0,8),抛物线经过点C,且顶点M在直线BC上,则抛物线解析式为 ;若点P在抛物线上且满足S△PBD=S△PCD,则点P的坐标为 .
将一副直角三角板(Rt△ABC和Rt△DEF),按图1所示的方式摆放,∠ACB=90°,CA=CB,∠FDE=90°,O是AB中点,D与点O重合,DF⊥AC于点M,DE⊥BC于点N,试判断线段OM与ON的数量关系,并写出证明过程。
小宇同学展示出如下正确的解法:
解OM=ON,
证明:连OC,则OC是斜边AB上中线:
∵CA=CB,
∴OC是∠ACB的平分线(依据1);
∵OM⊥AC,ON⊥BC;
∴OM=ON(依据2)
(1)上述证明过程中的“依据1”“依据2”分别是指:依据1_____依据2______。
(2)你有与小宇不同的思考方法吗?请写出你的证明过程:
(3)将图(1)中的Rt△DEF沿着射线BA方向平移至图(2)所示的图形位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于N,连接OM、ON,试判断线段OM、ON的数量关系和位置关系,并写出证明过程。
图(1)是边长为(a+b)的正方形,将图(1)中的阴影部分拼成图(2)的形状, 由此能验证的式子是( )
A、(a+b)(a-b)=a2-b2
B、(a+b)2-(a2+b2)=2ab
C、(a+b)2-(a-b)2=4ab
D、(a-b)2+2ab=a2+b2