题目内容
不等式组的所有整数解的和为______.
如图,在矩形ABCD中,AB=12,BC=9,点E,G分别为边AB,AD上的点,若矩形AEFG与矩形ABCD相似,且相似比为,连接CF,则CF= .
如图,中,,,,点D是BC的中点,将沿AD翻折得到,联结CE,那么线段CE的长等于_______.
8的相反数是( )
A. ; B. ; C. ; D. .
如图,在四边形OABC中,,点的坐标分别为,点D为AB上一点,且,双曲线经过点D,交BC于点E
求双曲线的解析式;
求四边形ODBE的面积.
所示,有一张一个角为的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是
A. 邻边不等的矩形 B. 等腰梯形 C. 有一个角是锐角的菱形 D. 正方形
【问题情景】利用三角形的面积相等来求解的方法是一种常见的等积法,此方法是我们解决几何问题的途径之一.
例如:张老师给小聪提出这样一个问题:
如图1,在△ABC中,AB=3,AD=6,问△ABC的高AD与CE的比是多少?
小聪的计算思路是:
根据题意得:S△ABC=BC•AD=AB•CE.
从而得2AD=CE,∴
请运用上述材料中所积累的经验和方法解决下列问题:
(1)【类比探究】
如图2,在?ABCD中,点E、F分别在AD,CD上,且AF=CE,并相交于点O,连接BE、BF,
求证:BO平分角AOC.
(2)【探究延伸】
如图3,已知直线m∥n,点A、C是直线m上两点,点B、D是直线n上两点,点P是线段CD中点,且∠APB=90°,两平行线m、n间的距离为4.求证:PA•PB=2AB.
(3)【迁移应用】
如图4,E为AB边上一点,ED⊥AD,CE⊥CB,垂足分别为D,C,∠DAB=∠B,AB=,BC=2,AC=,又已知M、N分别为AE、BE的中点,连接DM、CN.求△DEM与△CEN的周长之和.
如图,在Rt△ABC中,∠C=90°,∠B=30°,以A为圆心适当长为半径画弧,分别交AC、AB于点M、N,分别以点M、N为圆心,大于MN的长为半径画弧交于点P,作射线AP交BC于点D,再作射线DE交AB于点E,则下列结论错误的是( )
A. ∠ADB=120° B. S△ADC:S△ABC=1:3
C. 若CD=2,则BD=4 D. DE垂直平分AB
不等式组的解集是_______.