题目内容
点(2,3),(1,0),(0,-2),(0,0),(-3,2)中,不属于任何象限的有( )
A. 1个 B. 2个 C. 3个 D. 4个
如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为______cm2
观察正六棱柱的建筑时,看到三个侧面的区域比看到一个侧面的区域( )
A. 小 B. 大 C. 一样 D. 无法确定
若将三个数,,表示在数轴上,其中能被如图所示的墨迹覆盖的数是__________.
在△ABC中,∠C=90°,c2=2b 2,则两直角边a,b的关系是( )
A. a <b B. a >b C. a =b D. 以上三种情况都有可能
如图,有一块含30°角的直角三角板OAB的直角边BO的长恰与另一块等腰直角三角板ODC的斜边OC的长相等,把这两块三角板放置在平面直角坐标系中,且OB=3.
(1)若某反比例函数的图象的一个分支恰好经过点A,求这个反比例函数的解析式;
(2)若把含30°角的直角三角板绕点O按顺时针方向旋转后,斜边OA恰好落在x轴上,点A落在点A′处,试求图中阴影部分的面积.(结果保留π)
【答案】(1)反比例函数的解析式为y=;(2)S阴影=6π-.
【解析】分析:(1)根据tan30°=,求出AB,进而求出OA,得出A的坐标,设过A的双曲线的解析式是y=,把A的坐标代入求出即可;(2)求出∠AOA′,根据扇形的面积公式求出扇形AOA′的面积,求出OD、DC长,求出△ODC的面积,相减即可求出答案.
本题解析:
(1)在Rt△OBA中,∠AOB=30°,OB=3,
∴AB=OB·tan 30°=3.
∴点A的坐标为(3,3).
设反比例函数的解析式为y= (k≠0),
∴3=,∴k=9,则这个反比例函数的解析式为y=.
(2)在Rt△OBA中,∠AOB=30°,AB=3,
sin ∠AOB=,即sin 30°=,
∴OA=6.
由题意得:∠AOC=60°,S扇形AOA′==6π.
在Rt△OCD中,∠DOC=45°,OC=OB=3,
∴OD=OC·cos 45°=3×=.
∴S△ODC=OD2==.
∴S阴影=S扇形AOA′-S△ODC=6π-.
点睛:本题考查了勾股定理、待定系数法求函数解析式、特殊角的三角函数值、扇形的面积及等腰三角形的性质,本题属于中档题,难度不大,将不规则的图形的面积表示成多个规则图形的面积之和是解答本题的关键.
【题型】解答题【结束】26
矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.
(1)如图①,已知折痕与边BC交于点O,连接AP,OP,OA.
① 求证:△OCP∽△PDA;
② 若△OCP与△PDA的面积比为1:4,求边AB的长.
(2)如图②,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P,A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M,N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.
如图,反比例函数在第一象限的图象上有两点A,B,它们的横坐标分别是2,6,则△AOB的面积是________ .
在Rt△ABC中,∠C=90°,BC=3,AB=5,则sinA的值为( )
A. B. C. D. 以上都不对
已知圆锥底面圆的半径为6厘米,高为8厘米,则圆锥的侧面积为( )厘米2.
A. 48 B. 48π C. 120π D. 60π