题目内容
“小红所在班级中有位同学的身高是4米”是 事件.
调查神舟九号宇宙飞船各部件功能是否符合要求,这种调查适合用 (填“普查”或“抽样调查”).
如图,直线a∥b,∠C=90°,则∠α= °.
如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于N,连接BM,DN.
(1)求证:四边形BMDN是菱形;
(2)若AB=2,AD=4,求MD的长.
已知菱形ABCD的两条对角线AC,BD长分别为6cm、8cm,且AE⊥BC,这个菱形的面积S= cm2,AE= cm.
如图,在菱形ABCD中,∠BAD=82°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于( )
A.67° B.57° C.60° D.87°
在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.
(1)当点D在边BC上时,如图①,求证:DE+DF=AC.
(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.
(3)若AC=6,DE=4,则DF= .
有若干个数据,最大值是124,最小值是103.用频数分布表描述这组数据时,若取组距为3,则应分为( )
A.6组 B.7组 C.8组 D.9组
如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF、再以对角线AE为边作第三个正方形AEGH,如此下去….若正方形ABCD的边长记为a1,按上述方法所作的正方形的边长依次为a2,a3,a4,…,an,则an= .