题目内容
如图①,点A、B、C在⊙O上,且AB=AC,P是弧AC上的一点,(点P不与点A、C重合),连接AP、BP、CP,在BP上截取BD=AP,连接CD.若∠APB=60°,解答下列问题:
(1)求证:△ABC是等边三角形;
(2)求证:△CDP是等边三角形;
(3)如图②,若点D和圆心O重合,AB=2,则PC的长为 .
(1)求证:△ABC是等边三角形;
(2)求证:△CDP是等边三角形;
(3)如图②,若点D和圆心O重合,AB=2,则PC的长为
考点:圆的综合题
专题:综合题
分析:(1)如图①,根据圆周角定理得到∠ACB=∠APB=60°,然后根据等边三角形的判定方法易得△ABC是等边三角形;
(2)如图①,由△ABC是等边三角形得BC=AC,再利用“SAS”证明△BCD≌△APC,得到CD=CP,∠BCD=∠ACP,接着证明∠DCP=60°,然后根据等边三角形的判定方法易得△CDP是等边三角形;
(3)如图②,由BP为直径,根据圆周角定理得∠PCB=90°,再利用△CDP是等边三角形得到∠OPC=60°,则∠PBC=30°;由于△ABC是等边三角形,则BC=AB=2,然后在Rt△PBC中根据含30度的直角三角形三边的关系可计算出PC的长.
(2)如图①,由△ABC是等边三角形得BC=AC,再利用“SAS”证明△BCD≌△APC,得到CD=CP,∠BCD=∠ACP,接着证明∠DCP=60°,然后根据等边三角形的判定方法易得△CDP是等边三角形;
(3)如图②,由BP为直径,根据圆周角定理得∠PCB=90°,再利用△CDP是等边三角形得到∠OPC=60°,则∠PBC=30°;由于△ABC是等边三角形,则BC=AB=2,然后在Rt△PBC中根据含30度的直角三角形三边的关系可计算出PC的长.
解答:(1)证明:如图①,
∵∠ACB=∠APB=60°,
而AB=AC,
∴△ABC是等边三角形;
(2)证明:如图①,
∵△ABC是等边三角形,
∴BC=AC,
在△BCD和△APC中,
,
∴△BCD≌△APC(SAS),
∴CD=CP,∠BCD=∠ACP,
∵∠BCD+∠ACD=60°,
∴∠ACP+∠ACD=60°,即∠DCP=60°,
∴△CDP是等边三角形;
(3)解:如图②,
∵点D和圆心O重合,即BP为直径,
∴∠PCB=90°,
∵△CDP是等边三角形,
∴∠OPC=60°,
∴∠PBC=30°,
∵△ABC是等边三角形,
∴BC=AB=2,
在Rt△PBC中,∵∠PBC=30°,
∴PC=
BC=
.
故答案为
.
∵∠ACB=∠APB=60°,
而AB=AC,
∴△ABC是等边三角形;
(2)证明:如图①,
∵△ABC是等边三角形,
∴BC=AC,
在△BCD和△APC中,
|
∴△BCD≌△APC(SAS),
∴CD=CP,∠BCD=∠ACP,
∵∠BCD+∠ACD=60°,
∴∠ACP+∠ACD=60°,即∠DCP=60°,
∴△CDP是等边三角形;
(3)解:如图②,
∵点D和圆心O重合,即BP为直径,
∴∠PCB=90°,
∵△CDP是等边三角形,
∴∠OPC=60°,
∴∠PBC=30°,
∵△ABC是等边三角形,
∴BC=AB=2,
在Rt△PBC中,∵∠PBC=30°,
∴PC=
| ||
| 3 |
2
| ||
| 3 |
故答案为
| 2 |
| 3 |
| 3 |
点评:本题考查了圆的综合题:熟练掌握圆周角定理和等边三角形的判定与性质;会运用三角形全等证明线段相等或角相等;会运用含30度的直角三角形三边的关系进行几何计算.
练习册系列答案
相关题目
下列计算正确的是( )
| A、-12-8=-4 | ||
B、(-
| ||
| C、-5-(-2)=-3 | ||
| D、-32=9 |
下列图形中有两条互相垂直的对称轴的是( )
| A、直角 | B、等腰三角形 |
| C、等边三角形 | D、线段 |
若|a|=3,|b|=5且a<0,b>0,则a3+2b=( )
| A、17 | B、-17 |
| C、17或-17 | D、以上都不对 |