题目内容
(1)求证:CF是⊙O的切线;
(2)∠F=30°时,求
| S△OFE | S四边形AOEC |
分析:(1)连接OE,根据角平分线的性质和等边对等角可得出OE∥AC,则∠OEF=∠ACF,由AC⊥EF,则∠OEF=∠ACF=90°,从而得出OE⊥CF,即CF是⊙O的切线;
(2)由OE∥AC,则△OFE∽△AFC,根据相似三角形的面积之比等于相似比的平方,从而得出
的值.
(2)由OE∥AC,则△OFE∽△AFC,根据相似三角形的面积之比等于相似比的平方,从而得出
| S△OFE |
| S四边形AOEC |
解答:
(1)证明:连接OE,
∵AE平分∠FAC,
∴∠CAE=∠OAE,
又∵OA=OE,∠OEA=∠OAE,∠CAE=∠OEA,
∴OE∥AC,
∴∠OEF=∠ACF,
又∵AC⊥EF,
∴∠OEF=∠ACF=90°,
∴OE⊥CF,
又∵点E在⊙O上,
∴CF是⊙O的切线;
(2)解:∵∠OEF=90°,∠F=30°,
∴OF=2OE
又OA=OE,
∴AF=3OE,
又∵OE∥AC,
∴△OFE∽△AFC,
∴
=
=
,
∴
=
,
∴
=
.
∵AE平分∠FAC,
∴∠CAE=∠OAE,
又∵OA=OE,∠OEA=∠OAE,∠CAE=∠OEA,
∴OE∥AC,
∴∠OEF=∠ACF,
又∵AC⊥EF,
∴∠OEF=∠ACF=90°,
∴OE⊥CF,
又∵点E在⊙O上,
∴CF是⊙O的切线;
(2)解:∵∠OEF=90°,∠F=30°,
∴OF=2OE
又OA=OE,
∴AF=3OE,
又∵OE∥AC,
∴△OFE∽△AFC,
∴
| OE |
| AC |
| OF |
| AF |
| 2 |
| 3 |
∴
| S△OFE |
| S△AFC |
| 4 |
| 9 |
∴
| S△OFE |
| S四边形AOEC |
| 4 |
| 5 |
点评:本题考查了切线的判定和性质、相似三角形的判定与性质以及圆周角定理,是基础知识要熟练掌握.
练习册系列答案
相关题目