题目内容
如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD与CE相交于点O,则= .
如图,A、B、C三点在⊙O上,连接ABCO,若∠AOC=140°,则∠B的度数为( )
A.140° B.120° C.110° D.130°
(1)计算:﹣24﹣+|1﹣4sin60°|+(π﹣)0;
(2)解方程:2x2﹣4x﹣1=0.
已知抛物线y=﹣mx2+4x+2m与x轴交于点A(α,0),B(β,0),且=﹣2,
(1)求抛物线的解析式.
(2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l的对称点为E,是否存在x轴上的点M,y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.
(3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形是平行四边形时,求点P的坐标.
济南与北京两地相距480km,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.
要使二次根式有意义,x必须满足 .
一组数1,1,2,x,5,y…满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y表示的数为( )
A.8 B.9 C.13 D.15
二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,有下列结论:
①abc>0;②b>a+c;③4a+2b+c<0;④2c<3b;⑤a+b≥m(am+b)其中正确的结论有 (填序号).
计算:(﹣a2)3( )
A.a6 B.﹣a6 C.a5 D.﹣a5
考点:幂的乘方与积的乘方.