题目内容
在直角坐标中,点P(2,﹣3)所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
甲、乙两名射击运动员在某次训练中各射击10发子弹,成绩如表:
且=8,=1.8,根据上述信息完成下列问题:
(1)将甲运动员的折线统计图补充完整;
(2)乙运动员射击训练成绩的众数是 ,中位数是 .
(3)求甲运动员射击成绩的平均数和方差,并判断甲、乙两人本次射击成绩的稳定性.
如图,不等式组的解集在数轴上表示正确的是( )
A. B.
C. D.
某学校在落实国家“营养餐”工程中,选用了A,B,C,D种不同类型的套餐.实行一段时间后,学校决定在全校范围内随机抽取部分学生对“你喜欢的套餐类型(必选且只选一种)”进行问卷调查,将调查情况整理后,绘制成如图所示的两个统计图.
请你根据以上信息解答下列问题:
(1)在这次调查中,一共抽取了 名学生;
(2)请补全条形统计图;
(3)如果全校有1200名学生,请你估计其中喜欢D套餐的学生的人数.
如图,在5×5的正方形网格中,每个小正方形的边长都为1,若将△AOB绕点O顺时针旋转90°得到△A′OB′,则A点运动的路径的长为( )
A.π B.2π C.4π D.8π
如图,抛物线经过点A(﹣3,0),点C(0,4),作CD∥x轴交抛物线于点D,作DE⊥x轴,垂足为E,动点M从点E出发在线段EA上以每秒2个单位长度的速度向点A运动,同时动点N从点A出发在线段AC上以每秒1个单位长度的速度向点C运动,当一个点到达终点时,另一个点也随之停止运动,设运动时间为t秒.
(1)求抛物线的解析式;
(2)设△DMN的面积为S,求S与t的函数关系式;
(3)①当MN∥DE时,直接写出t的值;
②在点M和点N运动过程中,是否存在某一时刻,使MN⊥AD?若存在,直接写出此时t的值;若不存在,请说明理由.
先化简,再求值:,其中x=.
下列图形既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
已知x、y满足,当0≤x≤1时,y的取值范围是 .